Raspberry P1 Testbed for Software-Defined
Networks

Jonathan DeFreeuw
Bradley Department of Electrical and
Computer Engineering
Virginia Tech
Blacksburg, VA 24060
Email: defreeuw @vt.edu

Abstract—Software-Defined Networking (SDN) has quickly
emerged as a useful alternative to coupled data-control planes
for management and configurations of networks, especially in
corporate data centers. These configurations can be deployed
to secure a network through analysis and redirection. However,
SDN-enabled hardware is currently expensive and out of reach
for the average consumer without firmware modifications to home
routers. Instead, this paper explores utilizing a $35 computer, the
Raspberry Pi, to act as an OpenFlow switch to communicate with
an OpenFlow controller. To test our switch and controller, we use
a POX SDN controller to mitigate the password brute-forcing of
an Internet-connected camera.

I. INTRODUCTION

In a traditional computer network, hosts communicate
through the use of switches and routers, which handle the
forwarding and routing functions. Switches exist on layer 2
of the network stack, using hardware media access control
(MAC) addresses to determine the next hop for a packet.
Routers lie in layer 3, using IP address to connect networks
together. Each of these devices maintain their own config-
urations, which administrators update manually or through
scripts. In either case, management requires significant thought
to allow a secure and operational network, particularly in
enterprise-level networks.

Software-Defined Networking (SDN) tackles the challenge
of increased complexity in expanding networks, by separating
the computation of routes, called the control plane, from the
physical forwarding of packets, called the data plane, creating
a single management tool in the SDN controller. Through
this controller, network administrators can programatically
configure their network’s hardware switches by creating the
flow rules. These rules are installed on flow tables, and can
be updated in real-time in reaction to new packets, or with
update statistical information that is queried from the switches.
The switch and controller communicate through a standard
interface, the most popular being OpenFlow [1].

The centralized controller allows for a more flexible dis-
tribution of configurations on a wide network by opening an
API to interact with the switch. Administrators develop SDN
applications to create new rules for the network such as main-
taining quality-of-service levels [2], tracking web statistics
[3], or denial-of-service mitigation [4]. Controller frameworks
are developed in multiple programming languages, including

Python (POX, Ryu), Java (OpenDaylight, Floodlight), and
C++ (NOX). This ability to effectively program a network
reveals numerous possibilities for network security. An SDN
makes way for security not just on the endpoints or edges of
a network, but also in the transmission of every packet sent
through it.

However, the benefits of a secure software-defined network
are out of reach for many Internet users in their homes, as
the cost of OpenFlow-enabled switches prevent them from
expanding outside of the corporate environment. Recent in-
novations such as the Zodiac FX or WX [5] have laid ground-
work for future consumer-devices, but are still significantly
more expensive than a standard switch. Instead, researchers
have developed virtualized forms of these switches, such as
OpenVSwitch [6] and LINC [7].

The author explores virtualized network infrastructure on
commodity hardware through the use of OpenVSwitch and
the Raspberry Pi 3. The Raspberry Pi is an ARM-based micro
computer running a Linux Debian-based operating system.
This OpenFlow-enabled Raspberry Pi will be used to secure
an Internet-connected surveillance camera, running an HTTP
web server for streaming and management.

In Section II, we look at existing research in security
through software-defined networks, while in Section III we
examine the OpenFlow protocol. Later in Sections IV.a and
IV.b, we discuss software and hardware implementations of
our system. In Section V, we test the hardware system in a
live network.

II. RELATED WORKS

This section reviews relevant research in security through
software-defined networking and the use of the Raspberry Pi
for network research.

A rapidly growing and still vulnerable field of devices is the
Internet of Things (IoT). The IoT is a broad name for given
to the network of Internet-connected devices, whether they be
cameras, routers, baby monitors, or washing machines. More
devices on the Internet means more vulnerabilities and more
devices for botnets. The growth of botnets in the last few
years have required innovative denial-of-service mitigations,
and the SDN has been shown to be an efficient technique.
With DefenseFlow, researchers query network devices for flow

statistics that may reveal signs of a DoS attack [8]. In the event
of a possible attack, traffic is diverted to an analysis program.
Anomaly detection algorithms have been deployed using
software-defined networks to provide more agile event man-
agement in a network. Mehdi et. al. use four algorithms [9]:
o Threshold Random Walk with Credit Based Rate Lim-
iting (TRW-CB) — network analyzes number of failed
connections and their responses (TCP handshakes) to
detect scanning worms
« Rate-Limiting — use a baseline of machine-to-machine
communication and isolate any traffic that stands out as
too rapid
e Maximum Entropy Detector — similar to rate-limiting,
but does more in depth comparison using entropy of the
last ¢ seconds of traffic
o« NETAD — analyze first packets of a connection, and use
that data to determine if there is an anomaly, otherwise
forward as normal

In [10], the authors develop a feature-selecting algorithm
for anomaly detection based on how bats identify prey. With
their algorithm, they are able to classify attacks with reason-
able certainty, including DoS and probe attacks. Bao et. al.
deployed an anomaly detection and prevention system in an
SDN using the J48-Tree algorithm. Later, they deployed the
algorithm on an FPGA to act as an OpenFlow switch on its
own.

Other researchers have looked to the viability of the Rasp-
berry Pi as a means of deploying software-defined networks. In
[11], the authors compare network throughput of a Raspberry
Pi based SDN to other implementations like Mininet and NetF-
PGA. They show that performance is almost as the same in
comparison to NetFPGA. Asghar et. al. compare performance
of an OpenWRT OpenFlow router with a Raspberry Pi switch,
using the Ryu and Floodlight controllers. They found that there
is significant packet dropping in the Raspberry Pi under load
in some scenarios, while performing better than the router in
others. They conclude that because they perform similarly on
average that the limiting factor is OpenVSwitch, a dependency
in both systems [12].

An interesting application of a Raspberry Pi system is for
rapid deployment of a network in an emergency situations. The
authors in [13] test the use of a software-defined Raspberry
Pi network for disaster relief networks, where the need for
Internet access and available databases is critical. They utilize
Docker containers to easily mobilize and configure network
functions.

III. OPENFLOW PROTOCOL

In this section, we examine the OpenFlow protocol, one
of the most utilized interfaces for communication between an
SDN controller and its switches.

While there are no standards defined by the IETF, RFC 7149
[14] and RFC 7426 [15] discuss the topic of software-defined
networking. However, in 2008, McKeown et. al. published the
OpenFlow white paper, defining the encapsulation techniques
for their protocol [1]. In 2009, Heller et. al. published a white

Version(s) Type(s)
1-1.0 0-HELLO
2-1.1
3-12 14 - FLOW MOD fmmmmmm———e ,
4-13) A HELLO i
- 32hits —————mw S i
" oxoo [version | Type | Tength | 0
£ os[md F ittt ,
= Ox08 , Z 147 FLOW_MOD :
b i Payloadifyps) g T

Fig. 1. OpenFlow packet header

paper with specifications for Open Flow switches [16], which
has grown and updated to become the standard for OpenFlow-
enabled switches. The OpenFlow project has then grown to
form the Open Networking Foundation, which has developed
tools like the Open Networking Operating System (ONOS).

The OpenFlow protocol defines a few different header
values that are the same through versions:

o version — the version of OpenFlow running (1-5 for 1.0-
1.4)
o type — defines the type of message being sent (Hello,

PacketIn)
e length — where the end of the message is
e xid — a unique transaction identifier used to relate

request to reply
e payload — a type-specific data sent from the switch

OpenFlow communication depends on a few different mes-
sage types, some more than others. Listed below are some
of the message types used in the software-defined network
created for this paper:

e Hello — handshake message done between switch and
controller, used to determine the OpenFlow version for
communication

e PacketIn — when a switch does not contain a flow
related to a specific packet (flow miss), then the switch
sends this message with data related to the packet, often
times the packet itself encapsulated in an OpenFlow
packet, to the controller.

e FlowMod — a controller modifies the flow rules on
a switch using this message type. Flows can match on
TCP/IP values, Ethernet values, or port number on the

switch.

e StatsRequest — used by the controller to request
information about a particular flow, such as packet or
data count

e StatsReply — used by the switch to relay infor-
mation about a particular flow, usually in response to
StatsRequest message from the controller

IV. SOFTWARE AND HARDWARE EXPERIMENT

For this experiment, the author proposed a private network
connected to the Internet through a NAT router. In this
network, there are five separate components with unique roles
for the purpose of this research:

L/ MiniEdit = o x
File Edit Run Help
L3
C
| =
d 7
(== : =
| E webhost
N ; /
= =
- - -
=t attacker s1

\!

sinkhole

stop

Fig. 2. Sample topology as shown in MiniEdit

1) Switch — An OpenFlow-enabled switch that forwards
packets to and from hosts connected to it. It communi-
cates with the Controller for flow rules.

2) Controller — A POX controller with applications for
standard routing, flow modifications for the Web Server,
and flow statistics for anomaly detection. Communicates
with the Switch through OpenFlow.

3) Webhost — A simple HTTP server connected to the
Switch

4) Attacker — A malicious actor within the network that
attempts to access secure information on the Web Server

5) Sinkhole — A machine within the network that captures
and saves all data relayed to it from the Switch

As an application for this network, we look to apply rate-
limiting concepts to secure our webhost. Our proposed threat
model focuses primarily on attackers with low-resources and
effort, looking to brute-force their way into an accessible
web server. Therefore, we focus on the number of packets
transmitting to the server per second as a means of detecting
anomalies.

A. Software Experiment

To begin building the system, the author used Mininet, a
virtual network testbed written in Python (http://mininet.org).
It includes a Python API to script the setup of virtual networks,
and a command-line interface to interact with the network
in real-time. Mininet can operate with different OpenFlow-
enabled switches, but for the purposes of this experiment,
the system used the default, OpenVSwitch. Mininet allows
multiple controllers, switches, and hosts to be create and
connected in complicated network topologies. In Figure 2,
the system topology is shown using the MiniEdit tool, which
is a graphical interface for Mininet. A virtual machine is
available for Mininet, which also includes the dependencies
for OpenFlow and the Python SDN controller called “POX”.

For this experiment, POX was chosen for its ease in rapid
development, and its availability in the Mininet VM. The POX
repository includes sample code and controllers such as a layer

2 forwarding switch controller and an ARP responder. The
POX controller written for the software prototype had three
components initially: flow control for TCP/IP traffic to and
from hosts, an ARP module that responded to ARP requests
with known locations, and a flow statistics module that queried
the switch for information about packet stats to the Webhost.
The controller was configurable at runtime to allow different
rate limits, query frequencies, and hosts and services to be
protected. Any other communication going to the webhost not
on the specified port was dropped.

Using the Mininet hosts, we can run different bash com-
mands as we would on the virtual machine, including Python
commands and HTTP queries. In our attacker host, we run a
bash script to query an HTTP server hosted on our webhost.
The server is a simple Python server that gives access to
the local file system, but can only handle a limited number
of requests per second before failing. This was effective in
determining whether the attack mitigation was successful or
not. Running the attack without the rate limiting controller
crashes the webhost’s server. With the controller running and
the switch connected to it, the switch would relay flow statis-
tics about the communication between the attacker and the
webhost using FlowStatsReceived messages, and for-
ward packets to the sinkhole. The sinkhole ran the t cpdump
utility to capture any traffic not intended for it to use. After an
idle time, the flow would be re-enabled and communication
could resume.

B. Hardware Experiment

Because of the Raspberry Pi’s ease of use and Linux
architecture, both the controller, attacker, and sinkhole could
be ported from the Mininet VM to their respective hardware
hosts. The webhost was attached to the network and set to
a static IP. However, setup of the switch required significant
configuration changes and experimentation.

OpenVSwitch is a network function virtualization tool that
allows a user to create and connect virtual bridges and ports
in a virtual network. A virtual bridge is connected to the
network stack of the host, and virtual ports are connected
to the bridge. In common uses of OpenVSwitch, the virtual
ports would be connected to other virtual switches or virtual
machines, creating a software-based network topology. But for
this part of the experiment, each of the virtual ports were
connected to a physical port, with a physical machine on the
other side of that port. Each of the virtual ports created was
disconnected from the IP stack, such that any communication
to those ports needed to be routed through the bridge. The
bridge also mitigated communication between the IP stack and
the Ethernet port the host used for its own communication.
Figure 3 shows the connection between virtual ports and the
physical ports of our setup.

The Raspberry Pi 3 has 1 10/100 Ethernet port, and 4 USB
2.0 ports. The one Ethernet port was used to connect our
“switch” to the router for access to the Internet through NAT,
while four 10/100 USB-to-Ethernet adapters were connected
to the USB ports. This expanded the switch to five ports, not

|
IP Stack ethl
= o o '
g
br0 |
3 Attacker
Router (bridge) @ ﬁ
|— eth3 |&—
@ []
I Sinkhol
inkhole A
ethd |a— o Sy 2
e
I Controller

Fig. 3. Network interface configuration for OpenVSwitch on a Raspberry Pi 3

including the non-configured 2.4GHz wireless chip also on the
board.

By default, OpenVSwitch runs a standard layer 2 switch
configuration, allowing communication through all ports with-
out the use of a controller. In the case of controller failure,
OpenVSwitch can be configured to use this as a fallback, or
use existing flows to attempt to continue to operate. After
modifications to our controller from the virtualized testbed,
we ended with three similar modules: a flow statistics query
module, a module to modify flows for the known hosts on the
subnet, and a layer 2 learning switch. Flow modifications in
the hardware testbed were similar to the virtualized network,
except that after processing a PacketIn message, the controller
would not allow other modules to access a packet. This made
it easier for our flow modifying module to process packets
that were necessary for securing the webhost, and skipping
the layer 2 switch modifications. In the event that a packet
that the security module did not recognize, the layer 2 switch
would process it and create the flow modification message.

Our webhost in hardware was a D-Link Internet-connected
camera. While capable of being accessed through WiFi, the
author felt it more feasible for this experiment to connect it
via Ethernet to the Raspberry Pi Switch. The camera operates
an HTTP server, hosted on port 80 by default. Username and
password are required to view the camera stream or make
any modifications. This made it a viable target for brute-force
attack, a recognizable anomaly for our security system. We
used the communication between the camera and a host while
viewing the stream as the baseline for the anomaly detection.

The sinkhole was modified to prevent the recording of
natural traffic moving through its interface. This was done
to separate the traffic captured for the anomaly, and natural
traffic such as ARP requests.

V. TESTING AND DISCUSSION

To test the hardware implementation of our SDN, we had
to create a better script than the one used in Mininet. Because
Mininet runs locally, all communication between hosts hap-
pens near instantaneously, exaggerating the number of packets
that travel between hosts per second. Initially, the author
tested using Python libraries such as scapy, requests, and
httplib, but no library would communicate fast enough to
distinguish itself from normal traffic to the webhost.

Instead, the author utilized a series of tools included in
the Kali Linux system, such as BurpSuite and THC-Hydra,
to craft a directed attack on the system. Using BurpSuite,
we can capture the HTTP request and response in the event
of a failed login attempt. Using this information, we can
configure the network logon cracker THC-Hydra to use a
particular username and password list to attempt to log into the
web page. Hydra could make a maximum of 64 connections
simultaneously, which was not quite enough to trigger the
anomaly detection. However, running 2 instances of the Hydra
program at the same time was enough to trigger an anomaly,
and the login attempts were forwarded to the sinkhole.

It is reasonable to assume that many attacks on the web
server hosted on the camera would not be detected via our
system. Other attacks not on the open port would be dropped
before it even reaches the endpoint. However, with simple
modifications to our anomaly detection module, we would be
able to detect several other anomalous traffic patterns, such
as many more connections being opened than normal (SYN
flood).

While a writeup of the specific configurations made to
the Raspberry Pi’s should allow most people to set up an
OpenFlow switch with this rate-limiting module, software-
defined networking and network function virtualization is not
currently in a place where the average Internet user would

be able to secure their home in this way. Future work would
include developing manageable user interfaces and modular
applications to allow security-as-a-service (SaaS) in home
networks.

VI. CONCLUSION

Innovations in open-source solutions to network manage-
ment such as OpenFlow and OpenVSwitch continue to im-
prove and allow new ways to provide secure and flexible
networks in many environments. Security applications will
continue to advance as machine learning techniques improve
and are applied to both anomaly detection and software-
defined networking.

In this paper, we discussed current research related to using
SDN to secure networks. We described the protocol OpenFlow,
and how it used to communicate messages between controllers
and switches. We presented the exploration of software and
hardware implementations of software-defined networks, and
how they can be used to secure a network using rate-limiting
anomaly detection. Our results show that while SDN security
techniques on commodity hardware is financially feasible for
the average user, its complexity may cause it to be inaccessible
for many people.

REFERENCES

[1]1 N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling
Innovation in Campus Networks,” ACM SIGCOMM Computer
Communication Review, vol. 38, no. 2, p. 69, 2008. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1355734.1355746

[2] M. A. Karaman, B. Gorkemli, S. Tatlicioglu, M. Komurcuoglu, and
O. Karakaya, “Quality of service control and resource prioritization
with Software Defined Networking,” Ist IEEE Conference on Network
Softwarization: Software-Defined Infrastructures for Networks, Clouds,
IoT and Services, NETSOFT 2015, no. 318665, 2015.

[3] W. H. Muragaa, K. Seman, and M. F. Marhusin, “A POX Controller
Module to Collect Web Traffic Statistics in SDN Environment,” vol. 10,
no. 12, pp. 2048-2053, 2016.

[4] M. E. Ahmed and H. Kim, “DDoS Attack Mitigation in Internet
of Things Using Software Defined Networking,” 2017 IEEE Third
International Conference on Big Data Computing Service and
Applications (BigDataService), pp. 271-276, 2017. [Online]. Available:
http://ieeexplore.ieee.org/document/7944950/

[5] Northbound Networks, “Zodiac FX,” 2017. [Online].
https://northboundnetworks.com/products/zodiac-fx

[6] G. Velusamy, D. Gurkan, S. Narayan, and S. Baily, “Fault-tolerant
OpenFlow-based software switch architecture with LINC switches for a
reliable network data exchange,” Proceedings - 2014 3rd GENI Research
and Educational Experiment Workshop, GREE 2014, pp. 43-48, 2014.

[7]1 H. Y. Pan and S. Y. Wang, “Optimizing the SDN control-plane per-
formance of the Openvswitch software switch,” Proceedings - IEEE
Symposium on Computers and Communications, vol. 2016-Febru, pp.
403-408, 2016.

[8] S. T. Ali, V. Sivaraman, A. Radford, and S. Jha, “A Survey of Securing
Networks Using Software Defined Networking,” IEEE Transactions
on Reliability, vol. 64, no. 3, pp. 1-12, 2013. [Online]. Available:
http://www?2.ee.unsw.edu.au/ vijay/pubs/jrnl/15tor.pdf

[9] S.Mehdi, J. Khalid, and S. Khayam, “Revisiting Traffic Anomaly Detec-

tion Using Software Defined Networking,” Lecture Notes in Computer

Science, vol. 6961, pp. 161-180, 2011.

R. Sathya and R. Thangarajan, “Efficient Anomaly Detection and

Mitigation in Software Defined Networking Environment,” INTERNA-

TIONAL CONFERENCE ON ELECTRONICS AND COMMUNICATION

SYSTEMS, pp. 1679-1684, 2015.

Available:

[10]

(1]

[12]

[13]

[14]
[15]

[16]

H. Kim, J. Kim, and Y. B. Ko, “Developing a cost-effective OpenFlow
testbed for small-scale Software Defined Networking,” International
Conference on Advanced Communication Technology, ICACT, pp. 758-
761, 2014.

M. Z. Asghar, M. A. Habib, and T. Hamalainen, “Performance
Evaluation of OpenFlow Enabled Commodity and Raspberry Pi
Wireless Routers,” vol. 10531, pp. 132—141, 2017. [Online]. Available:
http://link.springer.com/10.1007/978-3-319-67380-6

R. Austin, P. Bull, and S. Buffery, “A Raspberry Pi Based Scalable
Software Defined Network Infrastructure for Disaster Relief Communi-
cation.”

M. Boucadair and C. Jacquenet, “RFC 7149,” pp. 1-20, 2014.

E. Haleplidis, J. H. Salim, D. Meyer, S. Denazis, and O. Koufopavlou,
“RFC 7426, pp. 1-35, 2015.

B. Heller, “OpenFlow Switch Specification 1.0.0,” Current, vol. 0, pp.
1-36, 2009.

