
Embedding Network Information for Machine Learning-based

Intrusion Detection

Jonathan D. DeFreeuw

Thesis submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Masters of Science

in

Computer Engineering

Joseph G. Tront, Chair

Randy Marchany

Yaling Yang

December 12, 2018

Blacksburg, Virginia

Keywords: intrusion detection, machine learning, word embeddings

Copyright 2018, Jonathan D. DeFreeuw

Embedding Network Information for Machine Learning-based

Intrusion Detection

Jonathan D. DeFreeuw

(ABSTRACT)

As computer networks grow and demonstrate more complicated and intricate behaviors,

traditional intrusion detections systems have fallen behind in their ability to protect network

resources. Machine learning has stepped to the forefront of intrusion detection research

due to its potential to predict future behaviors. However, training these systems requires

network data such as NetFlow that contains information regarding relationships between

hosts, but requires human understanding to extract. Additionally, standard methods of

encoding this categorical data struggles to capture similarities between points. To counteract

this, we evaluate a method of embedding IP addresses and transport-layer ports into a

continuous space, called IP2Vec. We demonstrate this embedding on two separate datasets,

CTU’13 and UGR’16, and combine the UGR’16 embedding with several machine learning

methods. We compare the models with and without the embedding to evaluate the benefits

of including network behavior into an intrusion detection system. We show that the addition

of embeddings improve the F1-scores for all models in the multiclassification problem given

in the UGR’16 data.

Embedding Network Information for Machine Learning-based

Intrusion Detection

Jonathan D. DeFreeuw

(GENERAL AUDIENCE ABSTRACT)

As computer networks grow and demonstrate more complicated and intricate behaviors,

traditional network protection tools like firewalls struggle to protect personal computers and

servers. Machine learning has stepped to the forefront to counteract this by learning and

predicting behavior on a network. However, this learned behavior fails to capture much

of the information regarding relationships between computers on a network. Additionally,

standard techniques to convert network information into numbers struggles to capture many

of the similarities between machines. To counteract this, we evaluate a method to capture

relationships between IP addresses and ports, called an embedding. We demonstrate this

embedding on two different datasets of network traffic, and evaluate the embedding on one

dataset with several machine learning methods. We compare the models with and without

the embedding to evaluate the benefits of including network behavior into an intrusion

detection system. We show that including network behavior into machine learning models

improves the performance of classifying attacks found in the UGR’16 data.

Acknowledgments

I would like to thank Dr. Tront and Professor Marchany for their patience and wisdom in

the last few years as I learned what it meant to truly research and learn. Their efforts in

helping me succeed cannot be overstated, and their help has certainly set me up for success

in my future career.

I would like to acknowledge the love and support of my parents, Brian and Dana, my

girlfriend, Jessica, and Brian and Deanne Burch. Without their positivity during my times

of struggle, this thesis would not have been possible.

I want to thank the members of the IT Security Lab, particularly Ryan Kingery and Zachary

Burch, for being awesome sounding boards for my thoughts throughout this entire work.

I also want to acknowledge the National Science Foundation for their funding through the

CyberCorps: Scholarships for Service program.

iv

Contents

List of Figures viii

List of Tables x

1 Introduction 1

1.1 Research Problem . 2

1.2 Proposed Solution . 3

1.3 Thesis Outline . 3

2 Background 4

2.1 Categorical Data Representation . 4

2.1.1 Encoding . 5

2.1.2 Embedding . 5

2.2 Word2Vec . 8

2.3 Visualization . 10

2.3.1 PCA — Principal Component Analysis 10

2.3.2 t-SNE — t-Distributed Stochastic Neighbor Embedding 11

2.3.3 Comparison . 12

v

3 Review of Literature 16

3.1 Security Datasets . 16

3.1.1 DARPA . 16

3.1.2 KDD’99 . 17

3.1.3 NSL-KDD . 18

3.1.4 CTU’13 . 19

3.1.5 UNSW-NB15 . 19

3.1.6 UGR’16 . 20

3.2 Machine Learning . 21

3.2.1 Clustering . 22

3.2.2 Neural Networks . 23

3.2.3 Decision Trees . 25

3.2.4 Categorical Data Representation . 27

4 Experimental Design 28

4.1 Binned IP2Vec . 29

4.1.1 Choosing Word Pairs . 29

4.1.2 Embedding Model Design . 31

5 Evaluation 35

5.1 Binned IP2Vec . 35

vi

5.1.1 CTU’13 . 36

5.1.2 UGR’16 . 40

5.2 Intrusion Detection . 45

5.2.1 Data Engineering . 46

5.2.2 Feature Space . 48

5.2.3 Supervised Learning . 49

5.2.4 Analysis . 55

6 Discussion 57

6.1 Future Work . 57

7 Conclusion 59

Bibliography 60

Appendices 71

Appendix A Feature Importances 72

vii

List of Figures

2.1 Example of an embedding of a TCP port . 6

2.2 Comparison between categorical data representations 7

2.3 Sliding window for determining target and context words in word embedding 8

2.4 Samples of the MNIST handwriting dataset 13

2.5 PCA reduction on the MNIST dataset . 14

2.6 t-SNE reduction on the MNIST dataset . 15

4.1 Choosing word pairs in IP2Vec . 29

4.2 Network design for IP2Vec . 31

5.1 Graphing pipeline for IP2Vec . 37

5.2 2D t-SNE of 32-dimensional IP2Vec embedding with min samples = 1 38

5.3 2D t-SNE of 32-dimensional IP2Vec embedding with min samples = 2 39

5.4 2D t-SNE of 32-dimensional IP2Vec embedding with min samples = 5 39

5.5 Rolling average loss of IP2Vec on UGR’16 42

5.6 t-SNE reduction of 32-dimensional IP2Vec embedding on UGR’16, with min samples

= 1 . 44

5.7 t-SNE reduction of 32-dimensional IP2Vec embedding on UGR’16, with min samples

= 2 . 45

viii

A.1 Importances for Features Ranked 1-75 in Non-Embedded XGBoost 73

A.2 Importances for Features Ranked 76-150 in Non-Embedded XGBoost 74

A.3 Importances for Features Ranked 1-75 in Embedded XGBoost 75

A.4 Importances for Features Ranked 76-150 in Embedded XGBoost 76

A.5 Importances for Features Ranked 1-75 in Non-Embedded Random Forests . . 77

A.6 Importances for Features Ranked 76-150 in Non-Embedded Random Forests 78

A.7 Importances for Features Ranked 1-75 in Embedded Random Forests 79

A.8 Importances for Features Ranked 76-150 in Embedded Random Forests . . . 80

ix

List of Tables

2.1 Comparing CBOW vs skip-gram for generating word pairings 9

5.1 Hardware-Software Configuration . 35

5.2 Training Statistics for IP2Vec on CTU’13 . 40

5.3 Server statistics for UGR’16 . 43

5.4 Client statistics for UGR’16 . 43

5.5 Training Statistics for IP2Vec on UGR’16 . 44

5.6 Period of attacks chosen from days in UGR’16 [14] 47

5.7 Nonembedded features for supervised learning 49

5.8 Embedded features for supervised learning, using binned IP2Vec. 49

5.9 Evaluation metrics for XGBoost with and without IP2Vec 52

5.10 Confusion matrix of test set for XGBoost using non-embedded features . . . 52

5.11 Confusion matrix of test set for XGBoost using features embedded with IP2Vec 53

5.12 Evaluation metrics for random forests with and without IP2Vec 53

5.13 Confusion matrix of test set for random forests using non-embedded features 54

5.14 Confusion matrix of test set for random forests using features embedded with

IP2Vec . 54

5.15 Evaluation metrics for MLP with and without IP2Vec 55

x

5.16 Confusion matrix of test set for MLP using non-embedded features 55

5.17 Confusion matrix of test set for MLP using features embedded with IP2Vec . 56

xi

List of Abbreviations

CART Classification and Regression Tree

CBOW Continuous Bag-of-Words

CNN Convolutional Neural Network

LSTM Long Short-Term Memory

MLP Multi-Layer Perceptron

NIDS Network Intrusion Detection System

NLL Negative Log-Likelihood

NLP Natural Language Processing

PCA Principal Component Analysis

RNN Recurrent Neural Networks

SMOTE Synthetic Minority Oversampling Technique

SVM Support Vector Machine

t-SNE t-Distributed Stochastic Neighbor Embedding

xii

Chapter 1

Introduction

As networks continue to grow in complexity and traffic throughput, the tools used to monitor

them for malicious behavior have struggled to keep the pace. These systems, called Network

Intrusion Detection Systems (NIDSs), are used to analyze the traffic on a network and assist

network administrators in detecting inbound and outbound attacks.

Most NIDSs in use today, such as Snort [1] and Bro [2], rely on a corpus of known attack

signatures in order to detect incoming malicious traffic. These signature-based NIDSs are ex-

tremely effective at detecting known attacks, but are inadequate at identifying novel attacks.

Rather than looking for particular values within a piece of data, other systems use statistical

analysis to determine if traffic deviates from a known ‘normal’ behavior. Anomaly-based

NIDSs are more generalizable to new attacks, but tend to incorrectly classify benign behav-

ior as anomalous. Anomaly-based detection tools can be configured using data collectors

such as Splunk [3] and Elasticsearch [4], generating alerts when collected data deviates from

the norm.

Machine learning techniques have been explored in security research as a means to improve

NIDSs. Clustering algorithms such as [5] and [6] detect outliers in the well-known security

datasets DARPA [7] and NSL-KDD [8]. Neural networks, including convoluted and recurrent

networks, have been developed using the same datasets, showing even more accuracy in

detecting outliers given a labeled dataset. However, while these algorithms may work well

for detecting anomalies in datasets approaching 20 years old, fewer models have been trained

1

2 Chapter 1. Introduction

using real-life data.

Cisco’s NetFlow protocol has been used in previous work for intrusion detection and traffic

classification [9]–[11] due to its efficient way of describing the behavior of a network. NetFlow

consists of several important pieces of information regarding a network connection, or flow,

including source and destination IP addresses, ports, protocols, and flags. The majority of

data within a flow is categorical, meaning while there are numbers to represent the data,

the information that is inferred from the data is not easily represented in a numerical space.

This makes feeding NetFlow into machine learning models difficult due to limited methods

in making NetFlow interpretable to a model.

1.1 Research Problem

Although machine learning has proven to be a rich source of new research for intrusion

detection systems, augmenting network data for machine learning models remains a difficult

task. Due to the complexities of the network stack, with protocols like IP, TCP, and UDP,

a significant amount of information is lost when interpreting addresses and ports as their

integer representations, as is required for most learning models. If we choose to train models

without features such as IP address or port, we lose out on any potential information that

those features could give our models.

While a considerable amount of work has been done to analyze machine learning methods

for network intrusion detection (see 3.2), a majority of work has been done using synthetic

datasets, meaning the data was generated in an environment designed to mimic a real-world

network. This is not a preferred method, particularly if we want to explore the deployment

of such intrusion detection systems in a real-world environment. Crafting real-world Internet

traffic is a non-trivial issue [12], especially in the complex and protocol-rich atmosphere of

1.2. Proposed Solution 3

today’s Internet.

1.2 Proposed Solution

This thesis aims to evaluate the use of an embedding technique devised by Ring et al.,

named IP2Vec [13]. IP2Vec enables the encapsulation of network behavior into a machine

understandable format, called an embedding. We implement IP2Vec, and modify it for use in

larger networks than the original implementation, as well as for potential use in a streaming

environment. We compare implementations to determine the effect of the modifications used.

To gauge the effectiveness of the information gathered by the embedding, we use IP2Vec to

embed the network features of NetFlow data before training supervised learning models for

intrusion detection. Rather than use synthetic network data, we use the UGR’16 dataset

[14]. UGR’16 contains includes a collection of synthetic and live traffic captured in a working

enterprise environment, recorded over several months. The models are evaluated by F1-scores

and confusion matrices of the test data.

1.3 Thesis Outline

This thesis is organized as follows. Chapter 2 provides background knowledge regarding the

concepts utilized in the system design. Chapter 3 examines related research in the fields

of security datasets and machine learning. In Chapter 4, our design is described and with

the results of the evaluation in Chapter 5. We discuss future work in Chapter 6 and finally

conclude the thesis in Chapter 7.

Chapter 2

Background

2.1 Categorical Data Representation

In machine learning, we refer to two types of data inputs: continuous and categorical data.

Continuous data is data that has meaning when represented as a number: for example, total

number of bytes or packets, and time in seconds. This type of data is easily recognizable

by learning algorithms, as functions can be made to map input to output in most cases.

Categorical data refers to data that exists as a finite set of values. For instance, there are

only 232 IPv4 addresses, so an IP would be categorical. Transport layer protocols are also

categorical (TCP, UDP, ICMP). Categorical data tends to be represented as strings, while

continuous data is represented as floats or integers.

A shortcoming of most machine learning techniques is their inability to handle categorical

variables directly. While algorithms such as random forests can handle categorical data,

other methods such as clustering or XGBoost require modifications to the data. An example

of categorical data is the source port field in a flow record. While the ports are represented

as numbers (SSH:22, HTTP:80), models would learn relationships between ports relative

to their numerical representation, not the service offered. This introduces problems when

services use alternative ports such as 8080 for HTTP. During training, we would prefer a

model to learn that ports 80 and 8080 are more similar than 80 and 81.

4

2.1. Categorical Data Representation 5

2.1.1 Encoding

The simplest way to overcome the issue of categorical data is to use one-hot encoding. This

converts discrete data into sparse vectors, where in an encoding of length n, there are n− 1

zeros, and a single 1 in the vector. The ‘1’ value represents the data that we are trying to

encode. In the encoding vector, there is an index for each unique value within the range of

the feature. This means that to encode a source port, our vector will have a length of 65536.

Because the vector contains a single index for each unique value, encoding becomes inefficient

when there is a large set of values, especially a large number of rare and underutilized values.

To combat this, we can condense the feature vector by only creating encodings for the most

frequent values within the feature’s unique values. For example, when encoding TCP/UDP

ports, we can reserve encodings for common ports like 22, (SSH), 443 (HTTPS), and 3389

(RDP). For all other ports, a single index is reserved in the vector. When encoding the

‘other’ ports, this value is 1, and all other values in the vector are 0. We refer to this method

of encoding as binned one-hot encoding.

2.1.2 Embedding

While binned one-hot encoding reduces the vector length for our port problem, it significantly

reduces the amount of information that can be learned for all of the words in the ‘other’

category. One-hot encoding becomes infeasible for other categorical variables, particularly

words for Natural Language Processing (NLP). For example, if we wanted to use binned

one-not encoding on the 100 most frequently used TCP/UDP ports, we would lose context

on 100/65536 = 99.85% of usable ports.

Instead, the preferred technique for representing large numbers of unique values is called

embedding. We refer to this collection of unique values as a vocabulary in the context of

6 Chapter 2. Background

embeddings. To create an embedding, we attempt to predict a output word given an input

word, generating a dense weight matrix (meaning most attributes are non-zero) for the entire

vocabulary. This results in a matrix of size n×m, where n is the size of the vocabulary and

m is the size of our embedding. Each row represents a single word, accessed by multiplying

a one-hot encoding vector by the weight matrix. Figure 2.1 shows an example of an HTTP

port being embedded. The embedding can be trained independently from other models, or

integrated into larger models as a preprocessing layer.

Weight Matrix

.14

w0 w1

-.23

-.22
-.40
.14
.63
-.32

23
.28
-.23
-.79
.47

0

ssh

0

ftp

1

ht tp

0

rdp

0

smtp

One-Hot Encoding Embedding

X =

Figure 2.1: Example of an embedding of a TCP port

The advantage of using an embedding over an encoding is the ability to predict semantic

similarity, meaning inputs are similar within the same context. This similarity is represented

within the floating point values in each input’s vector, and can be calculated using a cosine

similarity. The cosine similarity measures the angle between two vectors, where the smaller

the angle, the more similar two vectors. Not only does this similarity provide more context

to the relationship between two words, the embeddings are also created in a vector space

orders of magnitude smaller than a one-hot encoding. This creates more rich features for a

classification problem, while also creating a smaller feature space. We describe a comparison

of our categorical data representation techniques in Figure 2.2.

2.1. Categorical Data Representation 7

0

ssh

0

ftp

1

ht tp

0

rdp

0

smtp

ssh ht tp other

0 1 0

.14embedding

w0 w1

one-hot encoding

binned one-hot
encoding

-.23

Figure 2.2: Comparison between categorical data representations
Using the methods described in this section, we can model a representation of port 80
(HTTP). Given 5 ports, a one-hot encoding would creating a vector of length 5, while

binned encoding would return a slightly smaller vector, given SSH and HTTP are the most
frequent ports. An embedding results in the smallest vector, with ‖v‖ = 2.

The example given creates vectors for a single feature (port number), but we can build a

vocabulary using a combination of features, such as IP addresses and protocols. By com-

bining features into a single embedding, a model can find similarities between a source IP

address and a port number, or a protocol and destination IP address. Training using many

different features to create an embedding allows more context to be included, such as how

related a port is to a transport layer protocol (e.g. TCP/UDP). This technique is described

in Section 3.2.4.

The main drawback with an embedding is its dependence on a separate model to train; a new

embedding would have to be created any time a new word is added to the vocabulary. This

8 Chapter 2. Background

makes embeddings difficult to utilize for online learning scenarios as retraining an embedding

could take several hours each time a new word appear. A simple fix is to add an ‘other’

category similar to encoding, though this minimizes the benefits of embedding for any word

in that category. However, if the initial training vocabulary is large enough (spans enough

time), then new words should be few and far between, leaving the ‘other’ category as a

worthy placeholder for infrequent words.

2.2 Word2Vec

A basic word embedding can be trained with a single layer in a neural network by using a

target word to predict a context word. Algorithms such as Word2Vec by Google researchers

[15] create more robust embeddings by adding more operations to their model than simply

predicting an output. Word2Vec uses one of two different means of creating target-context

word pairs: continuous bag-of-words (CBOW) and skip-gram In a CBOW architecture, the

model takes the words surrounding a target word and uses them to predict the current word.

In essence, the model will attempt to predict a word given its context. In Table 2.1a, we use

wi−2, wi−1, wi+1, and wi+2 to predict wi. The opposite of CBOW, a skip-gram architecture

will use a target word to predict the context word. Table 2.1b shows that we will use wi to

predict wi−2, wi−1, wi+1, and wi+2. {

brown fox jumped over dog

{ { {{

wiwi-2 wi-1 wi+ 2wi+ 1

Figure 2.3: Sliding window for determining target and context words in word embedding

2.2. Word2Vec 9

Input Output

brown jumped
fox jumped
over jumped
dog jumped

(a) CBOW

Input Output

jumped brown
jumped fox
jumped over
jumped dog

(b) Skip-Gram

Table 2.1: Comparing CBOW vs skip-gram for generating word pairings

Word2Vec includes other functions to its embedding model that set it apart from standard

word embeddings:

Negative Sampling. Training embeddings for large vocabularies requires many updates

during backpropagation: for example, using the Google News dataset, there are 3,000,000

unique words, which in [16] is embedded to 300 dimensions. Updating all 3, 000, 000 · 300 =

900, 000, 000 weights within the embedding matrix during backpropagation is expensive and

would take a large amount of time. Instead, negative sampling causes a model to only update

the weights for t words. This is done by using binary classification, learning when two words

are similar (1) or dissimilar (0). Mikolov et al. propose t = [5 − 20] for small datasets and

t = [2− 5] for larger datasets, though the definitions for ‘small’ and ‘large’ are not clear.

Subsampling of Frequent Words. In creating word pairings using CBOW or skip-gram,

many words in a vocabulary will carry a significantly heavier weight in the frequency dis-

tribution, though less weight in a specific window. For example, common English words

such as ”the” and ”a” will make up a large portion of a training set, but do not provide

much semantic knowledge in a sentence. To overcome this, Mikolov et al. subsampled their

training set to reduce the number of word pairings to train on, based on their frequency

within the vocabulary. The probability that a word would not be trained on was determined

using the formula [15, eq. (5)]:

10 Chapter 2. Background

P (wi) = 1−

√
t

f(wi)
(2.1)

where t is a threshold around 10−5 and f(wi) being the frequency of word wi.

Additive Compositionality The authors of [15] show that because the target and context

word weights share a linear relationship in their model, vectors created by Word2Vec can be

added and subtracted to create meaningful vectors. For example, when W is the embedding

operation:

W (man)−W (woman) + W (king) ≈ W (queen) (2.2)

Given the embeddings for the words man, woman, and king, we can reasonably approximate

the vector that would represent the word queen within that vocabulary.

2.3 Visualization

In order to visualize the results of trained machine learning models and embeddings, algo-

rithms are needed to condense an n-dimensional space into a 2- or 3-dimensional space. This

section explains two separate dimensionality reduction methods, called Principal Component

Analysis (PCA) and t-Distributed Stochastic Neighbor Embedding (t-SNE).

2.3.1 PCA — Principal Component Analysis

Principal Component Analysis is an algebraic method of producing m dimensions for an

n-dimensional space. To do so, PCA calculates the principal components of a dataset, which

are new features that attempt to capture the most variance from the original dataset. These

2.3. Visualization 11

components are linear combinations of the n features, meaning relationships between features

are captured within each of the individual components. However, principal components are

independent from one another, which is useful for calculating linear regressions on reduced

datasets.

2.3.2 t-SNE — t-Distributed Stochastic Neighbor Embedding

While PCA attempts to create m features that represent the most variance in an n-dimensional

vector, we focus more on global similarities using PCA. In some cases, this is not a preferred

method to visualize a high-dimensional dataset because similarities between distant points

should not greatly effect the similarities between closer points. Instead, we would prefer to

preserve the local similarities between all points across all features, and use those similarities

in a new dimensional space. This is the goal of t-SNE: to maintain similarities of points in

two different spaces, while minimizing the error between the two sets of similarities.

Van der Maaten and Hinton proposed t-SNE [17], a widely used method [13], [18] to map

high-dimensional data to low-dimensional (but still related) manifolds. To do so, t-SNE first

uses a probability as a representation of similarity. The algorithm calculates the probability

pj|i for any point xi, that another point xj will be chosen from its neighbors. Points are

chosen in proportion to a Gaussian distribution centered around xi. This calculation is done

across all points in the set. A similar method is applied to a low-dimensional representation

of the data.

With these probabilities in hand, t-SNE uses Kullback-Leibler divergence as a means to

calculate the error between two probabilities. The cost C between the high-dimensional

probabilities P and low-dimensional probabilities Q can be defined as [17, eq. (2)]

12 Chapter 2. Background

C =
∑
i

KL(Pi||Qi) =
∑
i

∑
j

pj|ilog
pj|i
qj|i

(2.3)

In order to minimize this error, t-SNE will perform gradient descent, much like how neural

networks or gradient-boosted machines such as XGBoost decrease the loss after classification.

However, this gradient descent is weighted to preserve the structure of local similarities. To

do this, t-SNE will penalize (increase the weight of) points that are similar in the high-

dimensional space, but dissimilar in the low-dimensional space. Nothing is done to the

weights if originally dissimilar points are similar in the new dimensions. This method of

‘tailing’ the probability distribution prevents points that are further apart from one another

from causing large changes to the overall representation.

We can configure the algorithm in many ways, with the main focus being on the idea of

perplexity. The perplexity of t-SNE is used to adjust the effective number of neighbors that

are within the Gaussian around xi. When determining neighbors, the algorithm utilizes

a random walk of a neighbor graph, which can be seeded so researchers can reproduce

reductions. The metric used for distance calculations between points can also be adjusted

to fit the dataset, such as using Minkowski or cosine distance metrics.

2.3.3 Comparison

To compare these methods of dimensionality reduction, we can reduce the feature space

of the MNIST handwriting dataset. This dataset is one of the most prominent datasets

for machine learning, as it small and interpretable. It represents thousands of handwritten

numbers, from 0-9, and are stored as 28x28 pixel images. Examples are shown in Figure 2.4

below. For the purposes of our comparison, we spread the 2-D matrix of pixels into a single

784-dimensional vector, where each dimension represents a single pixel. We then reduce the

2.3. Visualization 13

784 dimensions into two dimensions for graphing.

Figure 2.4: Samples of the MNIST handwriting dataset

We first use the PCA dimensionality reduction method to find the two most effective principal

components for the 784-dimensional space. These two components represent about 17% of

the variance in our data, meaning that all of our points are fairly similar to one another.

This graph is shown in Figure 2.5. As we can see, all points are clustered together in a single

blob, showing the PCA does not do well in distinguishing different values within our data.

We can compare this to the visualization using t-SNE with a perplexity of 40. The algorithm

iterates 300 times to decrease the error between the conditional probabilities of the high and

low dimensional data. As seen in Figure 2.6, handwritten digits that are visually similar are

grouped together, and those that are dissimilar are further apart. For example, 4’s (purple)

and 9’s (navy) are intertwined in their clusters, but 0’s (red) are away from other digits.

14 Chapter 2. Background

Figure 2.5: PCA reduction on the MNIST dataset

2.3. Visualization 15

Figure 2.6: t-SNE reduction on the MNIST dataset

Chapter 3

Review of Literature

The purpose of this chapter is to explore the research related to the content of this thesis.

We will analyze the viability of widely-used security datasets, and the ways that different

machine learning methods have been utilized for intrusion detection.

3.1 Security Datasets

In order to properly develop and test security tools, researchers require meaningful datasets

to train models and algorithms. A number of datasets have been produced over the last few

decades, many of which are still being used and verified using novel security techniques.

3.1.1 DARPA

The 1999 DARPA dataset is a tcpdump dataset created by DARPA and MIT Lincoln Lab for

an intrusion detection competition [7]. It is a modification of the 1998 DARPA dataset, made

to include more attacks and an augmented network configuration. The data was collected

over a five-week period on a simulated military network. with synthetic attacks running

during Week 2.

One of the first notable criticisms of using this dataset for modern research is its age. Being

that the dataset is 20 years old, NIDSs developed with DARPA may not be generalizable

16

3.1. Security Datasets 17

to network traffic generated today. The size and complexity of current networks is several

degrees removed from the simulated environment used by DARPA. Even as the data was

generated, researchers were observing an increase in network pollution [19]. This pollution

consists of strange-looking traffic, but is nonetheless benign.

Mahoney [20] creates a detailed analysis of the shortcomings of the DARPA dataset. By

developing purposefully inaccurate detection systems, the author is able to demonstrate the

existence of artifacts in the data that can skew the results of other detection systems. In

his paper, Mahoney discusses the implications of simulated traffic not aligning properly with

real-traffic. For example, there are attacks in the test data that contain Time-to-Live values

that do not exist in the training data.

3.1.2 KDD’99

Created as part of a competition at the Fifth International Conference on Knowledge Dis-

covery and Data Mining in 1999 [21], the KDD Cup 1999 dataset - commonly referred to as

KDD’99 - is one of the most utilized datasets in computer security. A Google Scholar query

for ‘KDD’99’ results in thousands of articles, hundreds of which have been published within

the last year.

The features in this dataset were generated using the DARPA tcpdump data. Some, such as

duration and protocol type, are taken directly from TCP connections. Other features are

extracted using domain knowledge of the payloads in the tcpdump files, such as logged in,

where a boolean describes if a connection successfully logged into a service. More features

were calculated within a two-second time window, particularly error rates and counters.

Overall, KDD’99 offers 41 features, including labels for attacks.

Despite the overwhelming popularity of KDD’99, it is not without its weaknesses: specifically

18 Chapter 3. Review of Literature

its foundation, DARPA. Because KDD’99 was developed from the DARPA data, flaws found

in DARPA could find their into the KDD data. As noted in [8], there is no formal definition

for attacks in either DARPA or KDD’99. Probes and scans should only be considered under

a specific threshold, which are not defined in either research.

When Portnoy et al. [22] performed a clustering analysis of the KDD’99 dataset, they

partitioned the data into 10 equal groups and found that partitions 4-7 contained only one

type of attack. Similarly, [23] found that denial-of-service attacks make up over 70% of the

testing data. This imbalanced distribution in the dataset makes evaluation methods severely

biased towards the most frequent attacks.

3.1.3 NSL-KDD

To combat many of the flaws in the KDD’99 data, researchers in [8] augment the dataset to

produce NSL-KDD. In NSL-KDD, there are no redundant records, meaning there will be no

frequency bias when training models. This also reduces the the size of the training set by

nearly 90%, and the test set by about 33%. For each record, a difficulty level is assigned,

and the number of records selected for NSL-KDD is inversely proportional to the percentage

of that difficulty within the original dataset. As a result, classification techniques will have

a better baseline for comparison during evaluation. The work presented by Tavallaee et al.

demonstrates that the NSL-KDD data improves the testing accuracy of a range of anomaly

detection algorithms.

Even though model training improved in comparison to the original KDD’99 set, it is worth

reminding that the NSL-KDD is still relying on the synthetic DARPA data from 1999. The

age and generation method of the dataset detract from the improvements made, as real-world

networks are still very different than those generated by DARPA.

3.1. Security Datasets 19

3.1.4 CTU’13

Garćıa et al. [24] recognized the lack of properly generated datasets, particularly when

evaluating the accuracy of botnet detection systems. To that end, they created a dataset

known as CTU’13 [24]. Within 13 scenarios, the authors created a network with live traffic,

and monitored hosts that were purposefully infected several pieces of malware. NetFlow files

were generated through tcpdump captures, and labeled as either Background, Normal, or

Botnet. Botnets were labeled through IP addresses, and Normal traffic was determined by

certain filters. All other traffic was labeled as Background.

This dataset is a well-purposed effort to create a new baseline for botnet evaluation methods.

Including real traffic mixed in with synthetic connections is a significant improvement over

fully simulated network such as in DARPA and KDD. However, the lengths of the captures

limit the dataset for the purposes of long-term temporal analysis, such as training models

across days of traffic to utilize time as a feature in detection.

3.1.5 UNSW-NB15

In order to remedy the weakness of the DARPA-based datasets, another synthetic dataset

was generated using similar techniques by Moustafa et al. [25]. Using the PerfectStorm

traffic generator by IXIA [26], researchers created tcpdump files, and extracted features

with Bro and Argus. The network has 45 IP addresses, with 49 individual features per flow,

spanning 41 hours over two days.

Nine different attack families exist in the dataset, including denial-of-service and backdoor

attacks. A shortcoming of this dataset is it is entirely synthetic, with attacks being generated

at fixed intervals. These fixed intervals could introduce unintentional affects during training

of a learning model, making learning using with temporal features difficult. It is also a short

20 Chapter 3. Review of Literature

dataset, so we would be unable to generate broader temporal factors like day of the week.

3.1.6 UGR’16

A relatively recent dataset published by Maciá-Fernández et al. shows promise as an ex-

tensive NetFlow dataset. Created and designed to be used for cyclostationarity research,

the UGR’16 dataset was collected at a tier 3 Internet service and cloud provider in Spain

[14]. Data was collected from March-June as a ground-truth set, and from the end of July

through August as a test set. It includes 12 of the most common NetFlow features, including

IP addresses, ports, and timestamps.

In the test set, the authors generated traffic from denial-of-service attacks, port scans, and

botnets using virtual machines that mimic many of the functions seen in the ISP’s network.

Botnet traffic was modified from Scenario 42 of the CTU’13 dataset [24] to fit the timestamps

and IP addresses to the ISP network. Flows are labeled base on the type of attack, or

labeled as background. The authors decided to include synthetic attacks so the dataset was

not dependent on inconsistent labeling of background data. Relying on purely live traffic

would require inspection of every flow to confirm if they are benign or malicious. Instead,

we assume that all traffic labeled as ‘background’ is benign.

The data was analyzed using a series of tools to label attacks that may have occurred in

the live capture. First, a combination of blacklists was used to label potentially malicious

flows, but it should be noted that these may not all be attacks. Attack signatures were also

analyzed and labeled. Using anomaly detection methods developed in [27], other scanning

and spam attacks were found through the training and test data. The authors of [14] provide

a thorough analysis of the anomalies detected, visualizing the sources and destinations of

the scans.

3.2. Machine Learning 21

The UGR’16 dataset stands out from other data not only because it is new and untested,

but also due to the structure of the data. In total, there are over 230GB of compressed

and anonymized NetFlow data that is intended to be used for long-term statistical analysis.

This structure is useful for creating NIDSs that utilize time-based features as context in their

decision process. These time features could expand to weeks, months, or seasons using this

dataset. But it should be noted that due to the novelty of this data, its practical usefulness

for machine learning and NIDS research has yet to be explored.

3.2 Machine Learning

Research in the field of intrusion detection has increasingly been exploring the use of machine

learning to classify malicious behavior or detect anomalies [28]. There are two ways that we

can utilize machine learning to solve a research problem. Classification techniques attempt

to place connections into bins to define a type of attack. On the other hand, we can use

regression to predict continuous values rather than classes, such as predicting the number of

flows that will occur within a time period.

We can evaluate the effectiveness of an intrusion detections system with several metrics, and

[29] argues that the false alarm rate is one of the most critical measures. IDSs should try

to minimize the number of inputs that are incorrectly labeled as ‘anomalous’. By limiting

the number of false positives, we can minimize the amount of time an analyst takes to

process all alarms. Mahoney and Chan [30] analyzed the results of an intrusion detection

competition. They found that limiting the number of alerts to 10 false alarms a day also

limits the detection rate to between 40% and 55%.

22 Chapter 3. Review of Literature

3.2.1 Clustering

Clustering is a form of unsupervised learning, meaning there are no labels included in the

data. The typical methods of clustering include k-means clustering [31], DBSCAN [32], and

BIRCH [33]. Because there are no labels, clustering is applied to outlier detection problems.

During algorithms such as DBSCAN or k-Nearest Neighbors, we split points into different

cluster using distance metrics. Points that are outside of a distance threshold from other

points are labeled as outliers. Otherwise, we set a threshold for the number of points in

a cluster and attempt to fit cluster labels (k-means). Points within a cluster that are far

enough away from the center of the cluster can be labeled as anomalous [34]. We can

label clusters by hand, and use those labels for supervised learning problems. This requires

domain knowledge of the data being clustered, and can lead to inaccurate training if data is

mislabeled.

Intrusion detection research using clustering has revolved around the KDD’99 and NSL-

KDD datasets. Iglesias and Zseby [35] use the improved NSL-KDD dataset to analyze the

importance of feature selection during k-means clustering. In [36], the authors show that

clustering techniques produce high false-positive rates on the NSL-KDD data. Kumar et

al. improve on the BIRCH algorithm in [37] by utilizing intra-cluster distances to evaluate

cluster quality. Their results show, however, that their clustering technique decrease the

classification rate of ‘normal’ connections in the KDD’99 as the number of clusters increase.

Other efforts to improve the results of k-means clustering on network intrusion data include

x-means [38] and y-means [39]. In [38], Ahmed and Mahmood modify the fixed number of

clusters, k, in the k-means method to use a range of x values. This allows the clustering

on KDD’99 and DARPA to produce more dynamic and effective clusters. Guan et al. use

y-means to remove outliers that lie outside a threshold in a k-means cluster, and generate

3.2. Machine Learning 23

more clusters from those outliers. They also use the KDD’99 dataset.

While clustering has been researched for use on static data, online learning for clustering

algorithms requires different approaches. In order to add a new point to a cluster, most

algorithms will recalculate all neighbors and clusters, which can take a significant amount

of time for large datasets. This is not feasible for streaming environments like live networks.

To this end, researchers extended the capabilities of clustering to operate in an incremental

manner. For instance, [40] proposes an incremental clustering algorithm for log data that

calculates distance from an input point to all clusters, rather than all neighbors. [41] main-

tains a history of all previous clusters in order to improve the recalculation and accuracy of

future clusters.

3.2.2 Neural Networks

Neural networks are a concept that has been around for several decades [42], but have slowly

grown in popularity in recent years due to the increase in computational power and solutions

to past problems [43]. Neural networks are a supervised learning model, that train hidden

layers of functions to predict an output from an input. These functions are saved for later

training or for production use. Stacking multiple hidden layers in a neural network is usually

referred to as deep learning.

Neural networks exist in several different flavors, including a multi-layer perceptron (MLP)

[42], recurrent neural networks (RNN, formerly named Hopfield networks after creator John

Hopfield), and convolutional neural networks (CNN) [44], [45]. Hochreiter and Schmidhuber

proposed the long short-term memory (LSTM) [46] to counter the vanishing and exploding

gradient problems described in [47].

Most of the intrusion detection systems that are based on neural networks rely on RNNs and

24 Chapter 3. Review of Literature

LSTMs. This is due to the fact that we can utilize the sequential nature of the RNN to build

temporal context during training. As we input data into an RNN, the network maintains a

memory of previous inputs (within a specific limit) to make a decision on the current input.

This is useful for intrusion detection so that our systems can take information from previous

flows to determine the intent of the input flow.

In 1999, Ghosh et al. proposed using Elman networks (a style of RNN) for modeling anomaly

behavior in the DARPA dataset [48]. The authors were able to detect 77.3% of intrusions

with no false positives. They showed an improvement of this model over an MLP and a

signature-based table lookup.

Staudenmeyer uses the KDD’99 dataset in [49] to evaluate the effectiveness of an RNN-

LSTM for intrusion detection. He finds that while 60% of networks trained had performance

better than random guessing (meaning that prediction rate was 50% or better), the models

trained did considerably better than the solutions to the original KDD competition. Kim et

al. ran a similar evaluation in [50] using KDD’99 and an RNN-LSTM. Their model averaged

a false alarm rate of 10%, which is considerably higher than would be usable in practice.

We can review [51] for an analysis of the use of different optimizers on an IDS trained on

KDD’99. Optimizers are used to calculate how to adjust the internal functions of neural

networks, and have varying degrees of speeds and accuracy.

Yin et al. evaluated using an RNN as a NIDS on the NSL-KDD dataset in [52]. They com-

pared different machine learning models including random forests and MLP, and demonstrate

that the RNN performs better than all other models in their experiment. Using the CTU’13

dataset to analyze the effectiveness of their models, Torres et al. use behavioral models to

encode their date to feed into an RNN [53]. Their behavioral model uses a combination of

the continuous and categorical features to encode the data into a 50-dimensional vector for

input into the RNN.

3.2. Machine Learning 25

3.2.3 Decision Trees

Another type of supervised learning method is a decision tree. Decision trees learn a series

of decisions that partition data into the labeled classes. Because these decisions are based on

the nature of the data and not mathematical functions of the data, we can interpret a tree

to understand why inputs give a particular output. We can combine trees using ensembling

methods to potentially improve performances.

Decision trees algorithms started with ID3 [54], which was later improved with the C4.5 tree

[55]. The C4.5 tree was only usable for classification problems, which prevent it from being

used for regression problems. Therefore, the algorithm was again improved, and became

known as Classification and Regression Tree (CART) [56].

C4.5 and CART have been applied to intrusion detection in several works. In [57], the au-

thors compared the C4.5 algorithm to a Support Vector Machine (SVM) , another standard

machine learning algorithm. They demonstrate high accuracy for C4.5 in the KDD99 prob-

lem. However, not much is given about other metrics of effectiveness, such as false alarm

rate, which is important when considering alerts for analysts. Similarly, [58] use C4.5 as an

algorithm to test their feature selection methods, showing high accuracy on KDD99, but do

not provide the other important metrics. Many other works [59]–[61], utilize a C4.5 tree for

intrusion detection research, though [60] uses live network data to train their model. Revathi

and Malathi evaluate several machine learning algorithms such as SVM and random forests

in [62], where we can see that the CART algorithms is severely outperformed by random

forests, a bagged tree approach. Bagging collects the outputs from many deep trees and

combines them using averaging or majority vote.

Random forests has been shown as an effective method of classification for intrusion detection

systems. Resende and Drummond perform an excellent survey of the use of random forests

26 Chapter 3. Review of Literature

for intrusion detection in [63], evaluating the performance metrics and content of numerous

works that utilize random forests. [64] tests the use of different sized forests using the NSL-

KDD dataset. Because a random forest is a combination of decision from many trees, the

number of trees (with different structures) has a noticeable effect on accuracy in this work.

Hota and Shrivas compare random forests with a simple neural network and C4.5 decision

tree using the NSL-KDD dataset, with better performance across all metrics, including

true and false positive rates [65]. In [66], we can see the important of feature selection

for random forests. Using Synthetic Minority Oversampling Technique (SMOTE) , random

forests performs better with 19 out of 41 features in NSL-KDD, but best with 22 out of 41

features.

A more recent approach to decision trees was introduced with XGBoost [67], a boosting

method of ensembling decision trees. Rather than combining the decisions of multiple large

trees, XGBoost trains many trees with the error of the previous tree. While this sequential

process takes time, it is improved by allowing the parallelized training of a single tree.

XGBoost has been used recently for many Kaggle competitions, but has not been evaluated

well for network intrusion detection problems. [68] analyzes the algorithm on the NSL-KDD

dataset. They provide a thorough discussion on their methodology for tuning the model and

the results of their training, but do not use the NSL-KDD dataset as provided. Instead,

the authors combine the training and test sets, which does not provide a means of testing

how well the model will operate on unseen data. XGBoost has been utilized for a thorough

analysis of a malware Kaggle competition [69], and was shown to perform well for this

problem. The authors extracted many features from hex dumps and disassembled malware

samples, and argue that while they did not win the competition, the tradeoff between the

complexity of their model and their performance sets them apart from the winner.

3.2. Machine Learning 27

3.2.4 Categorical Data Representation

In Section 2.1.2, we discussed encoding and embedding, and how we can use them to convert

the categorical representation of TCP ports into a continuous value that machine learning

algorithms can understand. Works such as [70] show the use of binned one-hot encoding for

representing ports for neural networks.

In [15], Mikolov et al. proposed a novel word embedding scheme called ‘Word2Vec.’ Word2Vec

includes additional functionality over a basic word embedding scheme including (1) subsam-

pling of frequent words to prevent overfitting, and (2) negative sampling on the weights that

are updated after each round of training. Word2Vec has shown to be useful during Natural

Language Processing (NLP), particularly for sentiment analysis [71] and text classification

[72].

The Word2Vec algorithm was adapted by Ring et al. in [13] to apply to network flows,

aptly named IP2Vec. Using a similar embedding scheme, the authors were able to create

embeddings for IP addresses and protocols in Scenario 50 in the CTU’13 dataset. By running

the DBSCAN clustering algorithm on a subnet of the IP addresses, the authors demonstrated

the ability to cluster botnet hosts together. This embedding was shown as a useful way to

visualize the similarities behaviors between hosts. Because the embeddings were trained on

a vocabulary of IP addresses, ports, and protocols, the embeddings for IP addresses contain

contexts of what hosts a machine was communicating, and the services offered and accessed

by these hosts. This offers a more efficient and richer means of converting the categorical data

of a flow record into continuous values that machine learning algorithms can understand.

Chapter 4

Experimental Design

Current machine learning research for network security revolves around the use of aging and

synthetic datasets such as KDD’99 [21]. While these works are relevant in demonstrating

the potential of these techniques, many datasets fail to include network features such as IP

and port. These features are readily available for any network with a NetFlow capture, and

contain considerable amounts of information regarding the relationships and behaviors of

hosts seen on a network.

NetFlow features are available in a dataset like CTU’13 [24]; however, they are difficult to

convert into continuous values for input into machine learning models. IP addresses are

categorical representations of 32-bits of information, and while those 32-bits are capable of

being used as integers, they do not reveal any information about the behavior of the host

they are tied to. When determining similarities between IP addresses, models will calculate

that two addresses are similar if they have similar numerical values, such as 192.168.1.1

and 192.168.1.2. These addresses are only one integer or one bit distant from one another,

making them very similar in some machine learning models, but may exhibit entirely different

behaviors.

28

4.1. Binned IP2Vec 29

4.1 Binned IP2Vec

Instead, we choose to capture similarities in IP addresses based on their behavior in our

network. We achieve this using the technique developed by Ring et al., named IP2Vec [13].

IP2Vec creates an embedding for IP addresses and ports in a NetFlow dataset, and learns

network behavior by predicting NetFlow features given other NetFlow features. The tech-

nique is similar to that of Word2Vec, but uses a custom method of determining input/output

pairs. We design and implement a modified version of Ring’s IP2Vec, described below.

4.1.1 Choosing Word Pairs

Word2Vec [15] utilizes continuous bag-of-words or skipgram (2.2) to determine the pairs of

words that will be used to train the embedding. In calculating word pairs, Word2Vec will

slide a window across each sentence in a document to decide the context around a given

word. The same technique is not be applicable when analyzing a network flow, as we are

not limited in reading a NetFlow record from left to right. When reading a flow record, an

analyst can infer information about the transaction given multiple associations of features,

but not necessarily all combinations of features.

Figure 4.1: Choosing word pairs in IP2Vec

30 Chapter 4. Experimental Design

Given a unidirectional NetFlow record like the one shown in Figure 4.1, we can extract

several pairs of inputs and outputs to train our embedding. As we decide these pairs, we

can ask several questions about what information we are trying to learn in order to choose

word pairs:

• What machines does the Source IP talk to?

Source IP to Destination IP

• Which services does the Source IP request?

Source IP to Destination Port

• Which protocols does the Source IP use to communicate?

Source IP to Protocol

• What machines host a given service?

Destination Port to Destination IP

• What machines operate using a given protocol?

Protocol to Destination IP

In the 5-tuple flow, the only feature not being used for learning an embedding is the Source

Port. We choose to omit this feature in our embedding because we are learning with unidirec-

tional flows. If we were to use Source Port as an input or output in our embedding process,

we would be attempting to learn unidirectional flows as bidirectional. In other words, given

only one side of a conversation, our embedding would attempt to infer information about

the other side of a conversation (which may not even exist in the cases of unidirectional

protocols like UDP). Instead, we expect to learn the behavior of a response from a second

flow record, and calculate the input/output pairs with the same process.

4.1. Binned IP2Vec 31

4.1.2 Embedding Model Design

After calculating word pairs, each pair is used as the input and target for a single layer

neural network. Figure 4.2 describes the behavior during training. An embedding layer

is used as a lookup table between each ‘word’ and its respective floating-point embedding;

mathematically, we are multiplying a one-hot encoding vector by a matrix, accessing the

row in the matrix that represents our word. The row is then passed through a linear layer,

the output of which is put into a final activation function. We use a logsigmoid function to

squash the output from the linear layer to between 0 and 1.

Figure 4.2: Network design for IP2Vec

Negative Sampling

Negative sampling is a loss function described by Mikolov et al. that is used to reduce the

effort needed to update embeddings in a large dataset [15]. Instead of updating all weights

32 Chapter 4. Experimental Design

in a matrix during backpropagation, negative sampling allows a select set of weights to be

updated after each input. For each input, the row containing the embedding for the input

is moved closer to the output, and more distant from a configurable neg samples rows of

other data.

We choose to use negative sampling as it changes a multiclass classification problem into a

binary classification problem. Rather than classifying an input into one of many different

classes, where the number of possible classes is the size of our vocabulary, the embedding

learns similarity between input and output. In other words, the binary problem allows our

model to determine if an input/output pair is similar (1) or not (0). Multiclass classification

become difficult

The negative samples are chosen at random from the vocabulary. In designing Word2Vec,

Mikolov et al. [15] stated that their models chose negative samples using a modified unigram

distribution:

P (wi) =
f(wi)

3
4∑N

n=0 f(wn)

This distribution works well in natural language processing problems, as words with high

frequencies like ‘and’, ‘a’, and ‘the’ are removed from the vocabulary because they do not

provide a significant amount of context. However, in NetFlow, removing the most common

features would cause us to lose information about important parts of our network. For in-

stance, removing highly frequency words in our NetFlow vocabulary would require removing

words like TCP, UDP, HTTP/S, etc. But choosing from a unigram distribution would push

the model to primarily select those common words as negative samples, rather than selecting

from a smoother distribution of the average frequency words.

Instead, we sample randomly from a uniform distribution for our negative samples, such

4.1. Binned IP2Vec 33

that each word has an equal probability of being selected. In our testing, this gave better

results compared to both a unigram distribution and the distribution suggested by Mikolov.

In doing so, we choose a middle ground between selecting the most frequent words too often,

and removing those words entirely.

IP Address Binning

To improve the training time of IP2Vec, we propose binning IP addresses that do not meet

some criteria. For our purposes, we choose to bin all IP addresses that are seen in less than

min samples flows. This reduces the size of the dataset by recognizing the lack of information

that we can train on when there are a minimal number of flows for an IP address. This bin

is defined as an ‘OTHER’ word in the vocabulary.

While this design choice may lead to a lack of context regarding how machines infrequently

operate with other machines, we believe it is appropriate for the embedding to learn how each

IP address interacts with a generalized ‘unknown’ category for other machines. Rather than

attempting to extract many individual definitions from very little information, we expect

the sum of the information from all flows to be more effective in producing meaningful

embeddings for the common words in the NetFlow vocabulary.

Hyperparameters

Other tunable parameters for the neural network are embedding dimension, batch size, and

epochs. The embedding dimension is the size of the vector that our embedding will output

for each word. Google developers working on the TensorFlow library recommend using the

4th root of the vocabulary size [73], and the original researchers working on IP2Vec chose

32 as their embedding size. This value is adjusted given the dataset we work with.

34 Chapter 4. Experimental Design

The batch size determines the number of word pairs that is trained on before backprop-

agation, while the number of epochs is the number of times the entire dataset is trained

over. A combination of these two hyperparameters affects both the training time and the

accuracy of the model. A smaller batch size allows fewer word pairs to be affected each

time the model backpropagates, meaning the embeddings for those words are updated more

precisely, rather than being influenced by the error from other words. However, as batch size

decreases, training time is significantly increased as the model will need to update weights

more frequently.

With more epochs comes more opportunities to update weights, but introduces overfitting

to our model. Overfitting reduces the embedding’s ability to generalize relationships, and

will cause the information contained in the embedding to be less flexible to less common

relationships. More epochs also means more training time, so for our purposes, we choose

to train initial models for 10 epochs, as was done in the original IP2Vec work [13].

Chapter 5

Evaluation

In this chapter, we describe the results of our evaluation of IP2Vec. The embeddings and

supervised learning models were trained on a machine with the following specs and packages:

Tool Version

OS Ubuntu 16.04.5 LTS
Python 3.6.5
Server Dell PowerEdge R630
CPU 2x Xeon E5-2670
RAM 72GB DDR3

Package Version

pandas 0.23.0
numpy 1.14.3

scikit-learn 0.19.1
pytorch 0.4.1
xgboost 0.80

Table 5.1: Hardware-Software Configuration

5.1 Binned IP2Vec

We use the PyTorch modules for Python to implement our embedding with same techniques

found in [13]. However, in order to prepare for larger datasets, we include a means to bin

uncommon or unknown IP addresses. This value is referred to as the min samples for our

vocabulary.

We train embeddings for both the CTU’13 and UGR’16 datasets, and evaluate the quality of

the embeddings through dimension reduction to a 2D space. The dimensionality reduction is

done through t-Distributed Stochastic Neighbor Embedding (t-SNE) [17], where we attempt

35

36 Chapter 5. Evaluation

to map an n-dimensional vector into an m-dimensional space. This process is discussed in

Section 2.3.2.

5.1.1 CTU’13

The first dataset we embed is the CTU’13 Scenario 50 dataset. This data includes ≈ 6 hours

of NetFlow traffic, with 10 unique IP addresses infected with the Neris botnet, which spams

HTTP and SMTP traffic to other addresses. Botnet traffic is an undemanding test case for

a technique to capture host behavior, as hosts infected with the same botnet malware tend

to behave in similar ways [74]. The hosts are distinguishable from other hosts due to their

repeated and cyclical behavior, particularly if the infected hosts behavior deviates from the

hosts normal behavior. Therefore, for each of the 10 infected hosts, we look to generate

embeddings that are more similar to one another than to embeddings of other IP addresses

in the dataset.

We compare the embedding with several values for min samples, to evaluate what effect bin-

ning IP addresses has on the embedding. For this dataset, we choose min samples={1,2,5}.

A value of 1 means that the vocabulary contains all IP addresses, regardless of the number

of times the IP address is seen in the dataset. We also test the embedding when the set of

IP addresses seen only once are binned together into a single word (min samples=2). Such

a value is useful for conserving space in the vocabulary by not learning about IP addresses

that may be related to simple reconnaissance or web crawlers. Instead, the binned word

is used to store a general definition for this category of hosts. A larger bin of 5 is used to

determine the effects of the binning process on a broader and more substantial set of the

data.

The graphing pipeline is shown in Figure 5.1. We condense a vocabulary of network features

5.1. Binned IP2Vec 37

into an embedding using IP2Vec, and transform those embeddings using t-SNE to create x

and y coordinates. Difficulties in interpretation become apparent after transforming non-

linear embeddings into a linear, 2D plane. Linear analysis techniques such as clustering

does not reveal significant information about the nature of the relationships made in the

embedding.

Figure 5.1: Graphing pipeline for IP2Vec

Ring et al. [13] uses DBSCAN [32] to cluster a t-SNE reduced embedding. This provides a

quantitative analysis of whether clusters can be separated and labeled into their appropriate

classes. Using DBSCAN, Ring et al. calculated the accuracy (whether a class was accu-

rately clustered), homogeneity (whether a cluster contains only one class), and completeness

(whether all points of a class are in the same cluster). However, these metrics are difficult to

accurately interpret through the t-SNE embedding due to the many hyperparameters that

effect the final output t-SNE. To that end, we choose to qualitatively analyze the t-SNE

embeddings, as the global structure of the data does not provide meaningful information,

particularly the metrics calculated by DBSCAN.

38 Chapter 5. Evaluation

The first embedding produced is used the verify the ability of IP2Vec to capture similarity

between machines with a known behavior. In the CTU’13 dataset, there are 10 IP addresses

of machines known to be infected with the Neris botnet. As these machines spam HTTP

and SMTP traffic in a similar manner, sharing network behavior, we expect a t-SNE rep-

resentation of the embedding to graph these IP addresses close to one another. t-SNE is

run using cosine similarity metric, as it is the same similarity metric used in Word2Vec [15].

Cosine similarity takes into account the direction and magnitude of vectors to determine a

[0, 1] range of likeness between vectors.

(a) /16 subnet (b) /24 subnet

Figure 5.2: 2D t-SNE of 32-dimensional IP2Vec embedding with min samples = 1

In Figure 5.2, we train an embedding with IP2Vec without binning. Each IP address in the

CTU’13 dataset has a word in the vocabulary, regardless of its frequency. This produces a vo-

cabulary size of 431,845 words, which includes IP addresses, ports, and protocols. We graph

IP addresses within the 147.32.1.1/16 subnet (1181 addresses), as well as the 147.32.84.1/24

subnet (256 addresses), as these are subnets that contain the botnet. As seen in the graphs

above, the infected hosts (red) are clustered together, meaning t-SNE is able to clearly learn

similarity between the embeddings of the hosts. Additionally, the dissimilarity between the

botnet hosts and other machines on the network is apparent in the relative distance between

the cluster of infected hosts and other points in the subnet.

5.1. Binned IP2Vec 39

(a) /16 subnet (b) /24 subnet

Figure 5.3: 2D t-SNE of 32-dimensional IP2Vec embedding with min samples = 2

Reducing the vocabulary of IP2Vec with the proposed min samples=2 technique reveals

similar results after reduction through t-SNE. By choosing min samples=2, the embedding

trains all IP addresses that are only ever seen in one flow into a single vocabulary word,

shown as ”Other” in the figures. This value is intended to capture flows of common network

traffic from simple scans, web crawling, or benign flows that are never repeated. This reduces

the vocabulary size from 431,845 to 417,452 (96.6%). As seen in Figure 5.3, the infected

hosts are clustered similarly as in min samples = 1.

(a) /16 subnet (b) /24 subnet

Figure 5.4: 2D t-SNE of 32-dimensional IP2Vec embedding with min samples = 5

To exaggerate the effects of binning infrequent IP addresses, we train a separate IP2vec

40 Chapter 5. Evaluation

embedding using min samples=5. In requiring an IP to be seen in more flows, we reduce

the vocabulary down to 209,632 words (48.5%). In doing so, we see the similarities between

the botnet hosts and other IP addresses in the dataset, as the botnet cluster is closer to

the bulk of the dataset. We can also see several points being graphed in the vicinity of

the botnet cluster. This shows that IP2Vec loses the ability to learn the unique behavior

of the botnet when drastically reducing the size of the vocabulary. Instead, the botnet

vocabulary becomes similar to other benign behavior. This can happen due to sharing

frequent destination addresses or services, such as DNS servers, as well as the relationship

between these points and the “Other” class.

The overall statistics for training the three IP2Vec embeddings is shown in Table 5.2.

ms=1 ms=2 ms=5

Vocabulary Size 431,845 417,452 209,632
Vocabulary % 100.0 96.6 48.5

Training Time (s) 5402 5414 5394
/16 KL-Divergence 1.317425 1.281992 1.325652
/24 KL-Divergence 0.713150 0.714128 0.731464

Table 5.2: Training Statistics for IP2Vec on CTU’13

5.1.2 UGR’16

Next, we embed the network information on a larger network than in CTU’13, using the

UGR’16 dataset [14]. This dataset contains gigabytes of NetFlow data from an Internet and

cloud service provider, making it a desirable target to analyze host similarities due to the

heterogeneous nature of the network traffic. However, it is not computationally feasible to

train an IP2Vec embedding on the entire dataset.

We choose a single day, August 1, as a target for our embedding, to narrow the focus of the

embedding. This produces about 135 million unidirectional NetFlow records. Because we

5.1. Binned IP2Vec 41

choose to train our models on CPU only (with no GPU acceleration), we choose to narrow

the dataset again into a single subnet: 42.219.152.1/21. This subnet was chosen because it

resulted in a moderately smaller dataset, 87 million flows.

For the IP2Vec embedding, we use only background flows in the August 1 subnet. All attacks

are removed from the data, as this embedding is used to represent a network at its normal

state. Training an embedding with the attacks will leak information about attacks from the

embedding into future models, overfitting any learning done with IP2Vec.

We take care to analyze the performance of the model as it is being trained. This done by

monitoring the negative log-likelihood (NLL) loss after each batch of the training process.

The average loss should decrease over time, as shown in Figure LOSS. The figure shows a

rolling average of the NLL loss for an embedding with min samples = 1. It should be noted

that due to the size of the dataset, we choose to decrease the number of epochs from 10 to

5. This also helps prevent overfitting, as continuing to train after the loss has approached

its minimum will cause the embedding to loss the ability to generalize to the less frequent

relationships in the dataset. As seen in Figure 5.5, the loss decreases significantly in the first

2 million batches, but loses momentum slowly afterwards.

For this dataset, we choose to continue using a 32-dimensional embedding. There are 817,439

unique words in the data; using the Google suggested rule of thumb [73], taking the 4th root

of the vocabulary gives ≈ 30, but we round to 32 to use a power of 2.

Because attacks are removed from the dataset, we analyze the August 1 data for the most

active web servers and clients to evaluate the effectiveness of the embedding. We are still

limited by the abilities of t-SNE to reduce the embeddings into a 2D plane, so complex

relationships are difficult to infer from the graphs. We expect web servers to be close together

in the graph, while clients with a more dynamic behavior ought to be more widespread.

42 Chapter 5. Evaluation

Figure 5.5: Rolling average loss of IP2Vec on UGR’16

We choose four web servers that are primarily active on ports 80 and 443, and which often

communicate to ephemeral ports (49152–65535). These are represented by the red squares

in Figures 5.6 and 5.7. We also choose 20 IP addresses that exhibit client-like behavior.

This hosts tend to use ephemeral source ports, and have a low number of unique destination

IP addresses. The clients are represented as red circles in the t-SNE graphs. Due to the

structure of the network in the UGR’16 data, the IP addresses chosen may exist behind a

NAT; however, we choose to interpret each IP addresses as a single host. As seen in Table

5.4, several IP addresses were chosen even though they had nearly equal numbers of unique

source and destination ports. These were chosen to round out the group to 20, as we needed

many active connections throughout the day to establish strong embeddings.

Figure 5.6 shows UGR’16, embedded and reduced, with min samples=1. As expected, the

web servers exist within the same cluster. The clients are also clustered in several positions,

showing that different groups of clients can be represented as similar in the 2D plane.

5.1. Binned IP2Vec 43

Src IP Common Src Ports # Src Port # Dst Port

42.219.156.211 80, 443 190 64515
42.219.155.56 80 4 64119
42.219.155.28 443, 80 56 62665
42.219.158.156 443, 22, 80 7370 59406

Table 5.3: Server statistics for UGR’16

Src IP # Src Port # Dst Port

42.219.157.222 49399 17
42.219.156.198 20322 2525
42.219.155.11 18190 9
42.219.156.197 16366 201
42.219.156.196 15760 245
42.219.156.194 15384 335
42.219.156.199 15373 190
42.219.153.154 14919 1911
42.219.157.58 13310 1345
42.219.153.149 12859 125

Src IP # Src Port # Dst Port

42.219.157.8 12284 149
42.219.153.8 9897 732

42.219.153.234 9489 138
42.219.155.113 8882 8771
42.219.157.145 8829 8909
42.219.157.6 7469 1496

42.219.155.131 6070 11
42.219.157.12 4367 421
42.219.159.182 1345 209
42.219.158.181 1219 337

Table 5.4: Client statistics for UGR’16

TODO: TALK ABOUT WHY EACH OF THE CLIENT CLUSTERS EXIST AS THEY

DO.

Next, we train another embedding for UGR’16 with min samples=2. This value is determined

in the same way as with CTU’13: binning words that are only ever seen once gives a

representation for machines such as simple probes or web crawlers. Using this value reduces

the size of the vocabulary from 817,439 to 724,220 (88.6%).

As seen in Figure 5.7, the “Other” point is graphed as more related to the servers than the

clients. This is due to number of times that the word ”Other” is used to predict one of the

server IP addresses, and vice versa. This situation is more common than “Other” being used

to predict the same port; therefore, the embedding for “Other” will be updated to be more

similar to the embeddings of the servers. This demonstrates that interpreting the t-SNE

44 Chapter 5. Evaluation

Figure 5.6: t-SNE reduction of 32-dimensional IP2Vec embedding on UGR’16, with
min samples = 1

graphs reveals more about the SIP/DIP word pairs than the effects of ports or protocols on

the embeddings of the IP addresses.

The overall statistics for training the two IP2Vec embeddings for UGR’16 is shown in Table

5.5.

ms=1 ms=2

Vocabulary Size 817,439 724,220
Vocabulary % 100.0 88.6

Training Time (s) 17549 17619
/21 KL-Divergence 1.351012 1.359721

Table 5.5: Training Statistics for IP2Vec on UGR’16

5.2. Intrusion Detection 45

Figure 5.7: t-SNE reduction of 32-dimensional IP2Vec embedding on UGR’16, with
min samples = 2

5.2 Intrusion Detection

In order to evaluate the effectiveness of IP2Vec in detecting intrusions in a network, we embed

the network information in UGR’16 using the binned IP2Vec model trained previously, and

define a multiclassification problem in the dataset. As described in [14], there are 6 unique

labels for attacks that were generated from virtual machines on the network: dos11, dos53s,

dos53a, scan11, scan44, and nerisbotnet. Including the background label, there are 7

unique classes that can be assigned to a datapoint. Because we are given class labels, we are

able to use supervised learning techniques to train models to predict those classes.

We look to show that the addition of the IP2Vec data will improve the classification perfor-

mance of several supervised learning models: Random Forests, XGBoost, and a single-layer

46 Chapter 5. Evaluation

Multi-Layer Perceptron (MLP). Each model uses the F-beta scoring metric to compare per-

formances, instead of metrics such as accuracy. In doing so, we can decrease the effect of

class imbalance in the dataset, and determine the models’ abilities to classify attacks, rather

than their abilities to correctly classify negative classes (in our case, background).

5.2.1 Data Engineering

Because of the limitations of training on CPU, as well as a large class imbalance, we take a

subnet of traffic from August 2nd. This is the same subnet used to extract data for IP2Vec:

43.219.152.1/21. However, this still leaves over 80 million flows, which becomes an issue

when training many models to tune hyperparameters. To that end, we take a time slice of

eight hours on August 2nd, from 8am-4pm, to bring the number of background flows to 30

million. We choose this timespan with the assumption that attacks would occur within a

normal work day, to disrupt the operation of services offered in the ISP network. Attacks

occurring in time periods with lower traffic throughput are not analyzed.

The UGR’16 dataset is structured such that each day has two two-hour of periods of attack,

spaced 12 hours apart. The first period is ‘planned’, meaning each attack type is scheduled

for a particular time within the two hours of attack. The second period of attacks is labeled

‘random’, where each attack is given a random time to begin, with the possibility of over-

lapping with other attacks. For our evaluation, we choose the ‘planned’ period of attacks to

inject into our eight-hour timeslice. This is primarily due to the absence of the botnet traffic

in ‘random’, as well as the desire for clear periods of time when attacks occur.

For each two-hour time period in the eight-hour timeslice, we inject the attacks from the

corresponding day that contains attacks in that time period. Table 5.6 describes the day and

time periods from which the attacks are extracted. We combine different days of data with

5.2. Intrusion Detection 47

the assumption that the attacks have no effect on the behavior of the rest of the network

[14]. The combination of eight hours of attacks and eight hours of background data from

August 2nd results in 37 million flows.

Day Time

Mon., 08/01/2016 8am-10am
Tues., 08/02/2016 10am-12pm
Wed., 08/03/2016 12pm-2pm
Thu., 08/04/2016 2pm-4pm

Table 5.6: Period of attacks chosen from days in UGR’16 [14]

Virtual Machine Substitution

In the UGR’16 dataset, each of the attackers and victims are virtual machines operated by

the authors, running similar resources as the rest of the network, such as HTTP and FTP

servers [14]. However, an analysis of the data reveals that there is no interaction between

the virtual machines and the outside network. This makes evaluating IP2Vec difficult, as

there is no embedding for the victims that does not contain attack traffic.

To remedy this, we choose four servers to replace the four victims of the network-based

attacks like dos11 and scan44. By analyzing the dataset to determine a profile for each of

the servers, we can modify the dataset to mimic the correct responses that the servers would

give during each of the attacks.

We also choose 20 machines that exhibit client-like behavior, as described in Section 5.1.2,

to replace the IP addresses of the hosts infected with the Neris botnet. No modifications

of responses is needed, as we assume the malware causes similar behavior regardless of IP

address.

48 Chapter 5. Evaluation

Time Window Expansion

With attacks added and modified to the eight-hour timeslice, we unfold every 100 flows into

a single data point, to create 371,770 100-flow datapoints for classification. This changes the

classification from ‘Does a single flow belong to an attack?’ to ‘Is an attack occurring in this

period of traffic?’. We choose 100 as the size of the window as an analysis of the August 1st

data shows an average of 101 flows per 100 milliseconds. A window is labeled background if

it contains no attacks in the 100 flows; otherwise, it is labeled as the attack that the window

contains.

5.2.2 Feature Space

We first train a baseline for each learning method we evaluate, using the set of features

described in Table 5.7. After the data has been expanded using the sliding window, each

row in the unembedded dataset contains 1703 features; 17 features taken from each of the

100 flows in the window, and 3 aggregate features extracted from continuous values in the

original flows. We choose to one-hot encode the protocols instead of using the embedded

values, as the number of unique protocols is small enough to encode. The embedding could

provide needed information, but also increases the size of our features space by another 3200

features.

The second feature space we evaluate includes the embedded network features: sip, dip,

sport, dport, as seen in Table 5.8. Each feature is embedded into 32 dimensions using the

IP2Vec model trained in Section 5.1.2. This means that each flow is given an additional 128

columns of information, and each window input is given 12800 new features, for a total of

14503 features when combined with the unembedded values.

5.2. Intrusion Detection 49

Feature Name Type

proto TCP int

proto UDP int

proto ICMP int

proto GRE int

proto IPIP int

proto ESP int

tos int

dur float32

pkts float32

bytes float32

Feature Name Type

rst int

syn int

ack int

urg int

fin int

psh int

forward int

span* float32

avg pkts* float32

avg bytes* float32

Table 5.7: Nonembedded features for supervised learning
* denotes extracted features, calculated per window.

Feature Name Type

sip {0-31} float32

dip {0-31} float32

sport {0-31} float32

dport {0-31} float32

Table 5.8: Embedded features for supervised learning, using binned IP2Vec.

5.2.3 Supervised Learning

The 371,770 samples are split into training, validation, and test sets, at a ratio of 60%, 20%,

and 20%, respectively. Each set is chosen at random, with at least 1% of the test set being

attack samples, chosen at random. The training and validation sets are split such that all

classes are balanced between the two sets.

For each type of learning method we implement, we perform a random search of values

to find the relative ranges for several hyperparameters. Once a smaller range of values

are determined, we perform a validation step to determine the effectiveness of each set of

hyperparameters in the selected range. The best performing set of parameters is then tested

with the holdout set. We report this score as the performance of each of the models.

50 Chapter 5. Evaluation

Prediction results in four types of labels; in binary classification, negative samples are usu-

ally the background data, while positive samples are in the class that we are interested in

detecting.

• True Positive (TP) - predicted positive, was positive

• False Positive (FP) - predicted positive, was negative

• True Negative (TN) - predicted negative, was negative

• False Negative (FN) - predicted negative, was positive

A confusion matrix can be used to visualize these values. Rows in the confusion matrices

shown represent all true values for a class, while the columns represent the class it was

predicted to be. True positives exist along the diagonal. Basic scores can be calculated

using these types of labels:

• Accuracy - ability to correctly classify data

accuracy =
TP + TN

TP + FP + TN + FN

• Precision - ability to avoid classifying negatives as positives

precision =
TP

TP + FP

• Recall - ability to correctly classify positives as positives

recall =
TP

TP + FN

5.2. Intrusion Detection 51

We choose to use a combination of precision and recall as our metrics for evaluation, as

accuracy is easily skewed by the number of TN points (in our case, background). Instead,

we use an F1 score, calculated by taking the harmonic mean of the precision and recall of

the prediction results, as described in Equation 5.2.3.

F1 =
2 ∗ precision ∗ recall
precision + recall

XGBoost

The first model we evaluate our feature spaces on is called XGBoost [67]. XGBoost is a

method of combining decision trees through boosting, an ensembling method where the error

from one tree is used to improve the performance of the next tree. As with many decision

trees, XGBoost provides a means of interpreting the decision making process through feature

importances, making it a desirable model for determining the effectiveness of features on

classification.

To optimize the models, we run a search of values for the parameters n estimators, max depth,

and min child weight. These values determine the number of trees to build, the maximum

depth of the trees, and the minimum error in a node before splitting, respectively. Other

parameters are set to default, or are constant and proportional to the feature spaces.

The non-embedded model produces an optimal validation score with parameters (203, 5,

3) for the search parameters, and an F1 score of 70.16% on the test set. The embedded

model is tested with parameters (197, 5, 3), and resulted in a score of 78.69%. Looking at

the confusion matrices for the final test set, we can see the embedded features reduce the

number of false positives, while also reducing the number of attacks classified as background.

52 Chapter 5. Evaluation

The prediction scores are shown in Table 5.9.

Non-Embedded Embedded

Training Score (%) 91.77 96.37
Validation Score (%) 78.32 85.83

Test Score (%) 70.16 78.69
Training Time 6m24s 1h29m29s

Table 5.9: Evaluation metrics for XGBoost with and without IP2Vec

Actual Values Predicted Values

background dos11 dos53s dos53a scan11 scan44 nerisbotnet

background 73433 2 38 2 120 8 8
dos11 3 10 55 0 1 0 0
dos53s 5 6 206 7 0 0 0
dos53a 2 0 5 88 0 0 0
scan11 86 0 0 0 123 0 0
scan44 1 0 0 0 1 18 14

nerisbotnet 5 0 1 0 0 3 103

Table 5.10: Confusion matrix of test set for XGBoost using non-embedded features

Random Forests

Random forests is a machine learning technique that stands as the converse of XGBoost.

While XGBoost utilizes boosting to improve sequential trees, random forests averages the

results of many decision trees to produce a prediction, an ensembling technique called bagging.

Just as with XGBoost, we select random forests as a method of evaluation due to its ability

to analyze which features were most important for classification, as well as its ease of use in

the scikit-learn libraries.

We perform a search of values for the n estimators to determine the optimal number of

trees to average together, and max depth, the maximum depth that a single tree can grow,

and max features, the amount of features used when building a tree. Unlike in XGBoost,

5.2. Intrusion Detection 53

Actual Values Predicted Values

background dos11 dos53s dos53a scan11 scan44 nerisbotnet

background 73476 0 17 4 113 0 1
dos11 5 44 20 0 0 0 0
dos53s 4 5 208 7 0 0 0
dos53a 2 0 6 86 1 0 0
scan11 74 0 0 0 135 0 0
scan44 3 0 0 0 0 26 5

nerisbotnet 3 0 1 0 0 5 103

Table 5.11: Confusion matrix of test set for XGBoost using features embedded with IP2Vec

we choose different ranges of feature percentages for random forests, as training times were

greatly increased when the maximum features was increased.

The non-embedded random forests was trained with n estimators=100, max depth=15, and

max features=0.3 while the embedded random forests was trained with parameters 100, 15,

and 0.02, respectfully. The confusion matrices of the test data for each are shown in Tables

5.13 and 5.14, with the final scores in Table 5.12. As shown, the embedded models produce

higher F1 scores due to the reduced number of false positives generated.

Non-Embedded Embedded

Training Score (%) 76.07 81.08
Validation Score (%) 65.77 70.09

Test Score (%) 57.55 71.66
Training Time 3m48s 7m07s

Table 5.12: Evaluation metrics for random forests with and without IP2Vec

Multi-Layer Perceptron

The third model we choose to evaluate the feature spaces on is a multi-layer perceptron

(MLP). Word embeddings such as IP2Vec can be used as a preprocessing step for other neural

networks such as an MLP; however, in our case, we choose to use pretrained embeddings.

54 Chapter 5. Evaluation

Actual Values Predicted Values

background dos11 dos53s dos53a scan11 scan44 nerisbotnet

background 73435 0 3 4 96 3 70
dos11 44 0 25 0 0 0 0
dos53s 43 0 167 13 0 0 1
dos53a 6 0 9 80 0 0 0
scan11 162 0 0 0 47 0 0
scan44 5 0 0 0 0 2 27

nerisbotnet 5 0 0 0 0 1 106

Table 5.13: Confusion matrix of test set for random forests using non-embedded features

Actual Values Predicted Values

background dos11 dos53s dos53a scan11 scan44 nerisbotnet

background 73608 0 2 1 0 0 0
dos11 54 0 15 0 0 0 0
dos53s 33 1 184 6 0 0 0
dos53a 4 0 11 80 0 0 0
scan11 164 0 0 0 45 0 0
scan44 1 0 0 0 0 31 2

nerisbotnet 5 0 0 0 0 7 100

Table 5.14: Confusion matrix of test set for random forests using features embedded with
IP2Vec

This is to prevent including information about attacks into the embeddings of IP addresses

and ports. We use the scikit-learn implementation of an MLP, which limits us to a single

activation function type for all hidden layers we use. Each layer of a network multiplies its

inputs by weights, sums the products, then passes the sums on to activation functions. The

number of activation functions per layer is a configurable parameter called hidden dim.

We search over hidden layer sizes in factors of 2 between 2 and the size of the input, meaning

1024 for the non-embedded data and 8196 for the embedded data. We choose to use a

Rectified Linear Unit (ReLU) as the activation function, as it is the default function and

provided better results when compared to logistic or tangent functions. The final networks

5.2. Intrusion Detection 55

for the non-embedded and embedded data use hidden dim values of 32 and 128, respectively.

The MLP performs the most poorly out of the test models, primarily due to the increased

number of false positives. The non-embedded model produced an F1-score of 31.51%, while

the embedded model performs slightly better at 46.61%.

Non-Embedded Embedded

Training Score (%) 64.19 84.78
Validation Score (%) 62.35 77.64

Test Score (%) 31.51 46.61
Training Time 3m07s 18m32s

Table 5.15: Evaluation metrics for MLP with and without IP2Vec

Actual Values Predicted Values

background dos11 dos53s dos53a scan11 scan44 nerisbotnet

background 72236 16 569 15 597 14 164
dos11 14 1 39 0 0 0 0
dos53s 15 2 189 9 2 1 1
dos53a 0 0 12 100 1 0 0
scan11 179 0 3 0 55 0 5
scan44 1 0 1 2 4 2 20

nerisbotnet 5 0 0 0 9 1 70

Table 5.16: Confusion matrix of test set for MLP using non-embedded features

5.2.4 Analysis

The primary means of interpreting the effects of the new features created from IP2Vec

on the intrusion detection models is comparing the importances of features for the tree

based methods: XGBoost and random forests. These feature importances are found in the

appendix, with Figures A.1-A.4 for XGBoost and Figures A.5-A.8 for random forests.

In each of the decision trees, the feature representing the amount of time elapsed within a

sample (span), had the most effect on the decision making process. This is expected, as many

56 Chapter 5. Evaluation

Actual Values Predicted Values

background dos11 dos53s dos53a scan11 scan44 nerisbotnet

background 72551 113 177 2 724 19 25
dos11 6 50 15 0 2 0 0
dos53s 4 6 195 4 1 0 0
dos53a 1 1 5 93 0 0 0
scan11 124 0 1 0 115 0 0
scan44 2 0 0 0 0 30 2

nerisbotnet 2 0 0 0 0 6 78

Table 5.17: Confusion matrix of test set for MLP using features embedded with IP2Vec

of the attacks generate large amounts of flows within a short period of time. However, past

this, XGBoost and random forests distinguish themselves from one another with the features

they choose to use. XGBoost utilizes the number of bytes in each of flow and the duration

of each flow. On the other hand, random forests tended to use flags to make decisions, with

a few samples of duration seen in the top 150.

Including the embedded flow information shifts the feature importances, particularly in

XGBoost. In XGBoost, we see features generated from embedding IP addresses take the

place of dur i in the top 150, where i is the index of the flow in the input. This shows that

XGBoost was able to use host information to classify attacks. And because the F1-scores

improved with the addition of this information, we can infer that this features provided more

information about how to classify a flow than did other features like dur i.

Random forests exhibits the same behavior, though not as exaggerated as XGBoost. Embed-

ded information from IP2Vec begins appearing in the bottom of the top 150 features, taking

the place of flag features and the duration of each flow. Again, span is the most important

feature, as it is the easiest of method distinguishing between an attack like denial-of-service

and a period of background flows. Other features are then used to determine the type of

attack that is occurring.

Chapter 6

Discussion

As shown, IP2Vec provides a meaningful contribution to the classification performance of an

intrusion detection system. The use of a static embedding as used in this work introduces

issues when in use for a long period of time. As IP addresses can change behavior over time,

using an embedding trained with past data will use old behavior to attempt to predict fu-

ture attacks. As noted in [13], training the embedding over time would fit in new behaviors,

updating the definition of an IP address as it changes in a method called online learning.

However, care should be taken with online learning, as attackers could potentially poison em-

beddings with specially crafted traffic, changing embeddings enough to allow future attacks

to remain undetected [75], [76].

6.1 Future Work

Approaching network intrusion detection and NetFlow data as an NLP problem introduces

many avenues for new work, particularly for determining the quality of embeddings created

from NetFlow traffic. In an NLP setting, word embeddings are validated through the use

of analogies, which takes advantage of the additive compositionality of Word2Vec (Section

2.2). In this work, we rely on t-SNE for determining similarities between IP addresses.

Developing analogies for IP2Vec would give a more quantitative evaluation for the quality

of the embeddings.

57

58 Chapter 6. Discussion

While we utilize decision trees for their interpretability and ease of use, more complicated

machine learning methods such as recurrent or convolutional neural networks may prove to

be a more appropriate technique to use embeddings in classification. These methods provide

a better means of giving temporal relationships between flows in a period of time, compared

to the static window generated in this work. IP2Vec is implemented in this work to be a

pregenerated set of definitions, but when combined with a neural network, the embeddings

can be trained while also training the network for classification. The combination of IP2Vec

with other deep learning methods may prove to be more useful for intrusion detection.

This work primarily focused on detecting attacks whose signatures are detectable from fea-

tures that are not related to IP2Vec. The most important feature for XGBoost and random

forests was the span feature, that describes the amount of time that passes within a window.

Future works that would like to test the embeddings more richly should focus on host-based

attacks, rather than network attacks like denial of service. These could include a variety of

botnet attacks such as in CTU’13 [24].

Chapter 7

Conclusion

In this thesis, we provide an analysis of several datasets for network security, and their

uses in intrusion detection with machine learning. Through this analysis, we find a need

for utilizing modern and more realistic datasets, as well as a means of representing flow

information like IP addresses. We implement and evaluate IP2Vec [13], and modify to allow

unknown values. We verify IP2Vec’s ability to capture similarities between hosts through

the CTU’13 dataset, by qualitatively comparing clusters containing botnet-infected hosts.

We demonstrate IP2Vec even further using the UGR’16 dataset, where we visualize the

similarities between web servers and clients.

We then evaluate the ability of IP2Vec to contribute to the classification of attacks that occur

in the UGR’16 dataset. Our evaluation shows that the inclusion of embedded information

improves F1-scores for XGBoost, random forests, and an MLP, at the cost of training time

in most cases.

In the future, focus should go primarily to developing evaluations for embedded network

information. Future work would also contribute to developing NetFlow datasets containing

host-based attacks with background information, allowing for better testing of IP2Vec.

59

Bibliography

[1] Cisco, Snort - Network Intrusion Detection & Prevention System, 2018. [Online]. Avail-

able: https://www.snort.org/.

[2] The Bro Project, The Bro Network Security Monitor, 2014. [Online]. Available: https:

//www.bro.org/.

[3] Splunk Inc., Splunk, 2018. [Online]. Available: https://www.splunk.com/.

[4] Elasticsearch BV, Open Source Search & Analytics - Elasticsearch, 2018.

[5] Z. Chen and Y. F. Li, “Anomaly detection based on enhanced DBScan algorithm”,

Procedia Engineering, vol. 15, pp. 178–182, 2011, issn: 18777058. doi: 10.1016/j.

proeng.2011.08.036. [Online]. Available: http://dx.doi.org/10.1016/j.proeng.

2011.08.036.

[6] W. Chen, F. Kong, F. Mei, G. Yuan, and B. Li, “A Novel Unsupervised Anomaly

Detection Approach for Intrusion Detection System”, Proceedings - 3rd IEEE Inter-

national Conference on Big Data Security on Cloud, BigDataSecurity 2017, 3rd IEEE

International Conference on High Performance and Smart Computing, HPSC 2017

and 2nd IEEE International Conference on Intelligent Data and Securit, pp. 69–73,

2017. doi: 10.1109/BigDataSecurity.2017.56.

[7] R. Lippmann, J. W. Haines, D. J. Fried, J. Korba, and K. Das, “1999 DARPA off-line

intrusion detection evaluation”, Computer Networks, vol. 34, no. 4, pp. 579–595, 2000,

issn: 13891286. doi: 10.1016/S1389-1286(00)00139-0.

[8] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed analysis of the KDD

CUP 99 data set”, IEEE Symposium on Computational Intelligence for Security and

60

https://www.snort.org/
https://www.bro.org/
https://www.bro.org/
https://www.splunk.com/
http://dx.doi.org/10.1016/j.proeng.2011.08.036
http://dx.doi.org/10.1016/j.proeng.2011.08.036
http://dx.doi.org/10.1016/j.proeng.2011.08.036
http://dx.doi.org/10.1016/j.proeng.2011.08.036
http://dx.doi.org/10.1109/BigDataSecurity.2017.56
http://dx.doi.org/10.1016/S1389-1286(00)00139-0

BIBLIOGRAPHY 61

Defense Applications, CISDA 2009, no. Cisda, pp. 1–6, 2009, issn: 2329-6267. doi:

10.1109/CISDA.2009.5356528.

[9] K. Flanagan and E. Fallon, “Network Anomaly Detection in Time Series using Distance

Based Outlier Detection with Cluster Density Analysis”, pp. 116–121,

[10] K. Flanagan, E. Fallon, A. Awad, and P. Connolly, “Self-Configuring NetFlow Anomaly

Detection using Cluster Density Analysis”, pp. 421–427, 2017.

[11] R. Miao, R. Potharaju, M. Yu, and N. Jain, “The Dark Menace : Characterizing

Network-based Attacks in the Cloud”,

[12] V. Paxson and S. Floyd, “Why We Dont Know How To Simulate the Internet”, in

Proceedings of the 29th conference on Winter simulation, 1997, pp. 1037–104.

[13] M. Ring, A. Dallmann, D. Landes, and A. Hotho, “IP2Vec: Learning similarities be-

tween IP addresses”, IEEE International Conference on Data Mining Workshops,

ICDMW, pp. 657–666, 2017, issn: 23759259. doi: 10.1109/ICDMW.2017.93.

[14] G. Maciá-Fernández, J. Camacho, R. Magán-Carrión, P. Garćıa-Teodoro, and R. Therón,

“UGR’16: A new dataset for the evaluation of cyclostationarity-based network IDSs”,

Computers and Security, vol. 73, pp. 411–424, 2018, issn: 01674048. doi: 10.1016/j.

cose.2017.11.004. [Online]. Available: https://doi.org/10.1016/j.cose.2017.

11.004.

[15] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Distributed Representations of Words

and Phrases and Their Compositionality”, pp. 1–9, issn: 10495258. doi: 10.1162/

jmlr.2003.3.4-5.951.

[16] M. Mihaltz, word2vec-GoogleNews-vectors, 2016. [Online]. Available: https://github.

com/mmihaltz/word2vec-GoogleNews-vectors.

http://dx.doi.org/10.1109/CISDA.2009.5356528
http://dx.doi.org/10.1109/ICDMW.2017.93
http://dx.doi.org/10.1016/j.cose.2017.11.004
http://dx.doi.org/10.1016/j.cose.2017.11.004
https://doi.org/10.1016/j.cose.2017.11.004
https://doi.org/10.1016/j.cose.2017.11.004
http://dx.doi.org/10.1162/jmlr.2003.3.4-5.951
http://dx.doi.org/10.1162/jmlr.2003.3.4-5.951
https://github.com/mmihaltz/word2vec-GoogleNews-vectors
https://github.com/mmihaltz/word2vec-GoogleNews-vectors

62 BIBLIOGRAPHY

[17] L. J. P. Van Der Maaten and G. E. Hinton, “Visualizing high-dimensional data using

t-sne”, Journal of Machine Learning Research, vol. 9, pp. 2579–2605, 2008, issn: 1532-

4435. doi: 10.1007/s10479-011-0841-3. [Online]. Available: https://lvdmaaten.

github.io/publications/papers/JMLR_2008.pdf%0Ahttp://www.ncbi.nlm.nih.

gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_

uids=7911431479148734548related:VOiAgwMNy20J.

[18] M. S. Alsadi and A. H. Hadi, “Visualizing clustered botnet traffic using T-SNE on

aggregated NetFlows”, Proceedings - 2017 International Conference on New Trends in

Computing Sciences, ICTCS 2017, vol. 2018-Janua, pp. 179–184, 2018. doi: 10.1109/

ICTCS.2017.30.

[19] V. Paxson, “Bro: A system for detecting network intruders in real-time”, Computer

Networks, vol. 31, no. 23, pp. 2435–2463, 1999, issn: 13891286. doi: 10.1016/S1389-

1286(99)00112-7.

[20] M. V. Mahoney and P. K. Chan, “An Analysis of the 1999 DARPA/Lincoln Labo-

ratory Evaluation Data for Network Anomaly Detection”, In Proceedings of the Sixth

International Symposium on Recent Advances in Intrusion Detection, vol. 2820, no.

Ll, pp. 220–237, 2003, issn: 0302-9743. doi: 10.1007/b13476. [Online]. Available:

http://www.springerlink.com/index/GF9CJ2VYY8E7QNK7.pdf.

[21] U. K. Archive, KDD Cup 1999 Data, 1999. [Online]. Available: http://kdd.ics.uci.

edu/databases/kddcup99/kddcup99.html.

[22] L. Portnoy, E. Eskin, and S. J. Stolfo, “Intrusion detection with unlabeled data using

clustering”, ACM CSS Workshop on Data Mining Applied to Security (DMSA), pp. 5–

8, 2001. [Online]. Available: http://academiccommons.columbia.edu/catalog/ac:

138734.

http://dx.doi.org/10.1007/s10479-011-0841-3
https://lvdmaaten.github.io/publications/papers/JMLR_2008.pdf%0Ahttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=7911431479148734548related:VOiAgwMNy20J
https://lvdmaaten.github.io/publications/papers/JMLR_2008.pdf%0Ahttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=7911431479148734548related:VOiAgwMNy20J
https://lvdmaaten.github.io/publications/papers/JMLR_2008.pdf%0Ahttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=7911431479148734548related:VOiAgwMNy20J
https://lvdmaaten.github.io/publications/papers/JMLR_2008.pdf%0Ahttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=7911431479148734548related:VOiAgwMNy20J
http://dx.doi.org/10.1109/ICTCS.2017.30
http://dx.doi.org/10.1109/ICTCS.2017.30
http://dx.doi.org/10.1016/S1389-1286(99)00112-7
http://dx.doi.org/10.1016/S1389-1286(99)00112-7
http://dx.doi.org/10.1007/b13476
http://www.springerlink.com/index/GF9CJ2VYY8E7QNK7.pdf
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://academiccommons.columbia.edu/catalog/ac:138734
http://academiccommons.columbia.edu/catalog/ac:138734

BIBLIOGRAPHY 63

[23] K. Leung and C. Leckie, “Unsupervised anomaly detection in network intrusion de-

tection using clusters”, Proceedings of the Twenty-eighth Australasian conference on

Computer Science - Volume 38, vol. 38, no. January, pp. 333–342, 2005, issn: 14451336.

[Online]. Available: http://portal.acm.org/citation.cfm?id=1082161.1082198.

[24] S. Garćıa, M. Grill, J. Stiborek, and A. Zunino, “An empirical comparison of botnet de-

tection methods”, Computers and Security, vol. 45, pp. 100–123, 2014, issn: 01674048.

doi: 10.1016/j.cose.2014.05.011.

[25] N. Moustafa and J. Slay, “UNSW-NB15: a comprehensive data set for network in-

trusion detection systems (UNSW-NB15 network data set)”, 2015 Military Commu-

nications and Information Systems Conference (MilCIS), pp. 1–6, 2015. doi: 10 .

1109/MilCIS.2015.7348942. [Online]. Available: http://ieeexplore.ieee.org/

document/7348942/.

[26] IXIA, PerfectStorm, 2018. [Online]. Available: http://www.ixiacom.com/products/

perfectstorm.

[27] J. Camacho, A. Pérez-Villegas, P. Garciá-Teodoro, and G. MacIá-Fernández, “PCA-

based multivariate statistical network monitoring for anomaly detection”, Computers

and Security, vol. 59, pp. 118–137, 2016, issn: 01674048. doi: 10.1016/j.cose.2016.

02.008. [Online]. Available: http://dx.doi.org/10.1016/j.cose.2016.02.008.

[28] R. Sommer and V. Paxson, “Outside the Closed World: On Using Machine Learning

for Network Intrusion Detection”, 2010 IEEE Symposium on Security and Privacy,

pp. 305–316, 2010, issn: 10816011. doi: 10.1109/SP.2010.25. [Online]. Available:

http://ieeexplore.ieee.org/document/5504793/.

[29] C. Gates and C. Taylor, “Challenging the Anomaly Detection Paradigm: A Provocative

Discussion”, Proceedings of the 2006 workshop on New security paradigms, pp. 21–29,

2007. doi: 10.1145/1278940.1278945.

http://portal.acm.org/citation.cfm?id=1082161.1082198
http://dx.doi.org/10.1016/j.cose.2014.05.011
http://dx.doi.org/10.1109/MilCIS.2015.7348942
http://dx.doi.org/10.1109/MilCIS.2015.7348942
http://ieeexplore.ieee.org/document/7348942/
http://ieeexplore.ieee.org/document/7348942/
http://www.ixiacom.com/products/perfectstorm
http://www.ixiacom.com/products/perfectstorm
http://dx.doi.org/10.1016/j.cose.2016.02.008
http://dx.doi.org/10.1016/j.cose.2016.02.008
http://dx.doi.org/10.1016/j.cose.2016.02.008
http://dx.doi.org/10.1109/SP.2010.25
http://ieeexplore.ieee.org/document/5504793/
http://dx.doi.org/10.1145/1278940.1278945

64 BIBLIOGRAPHY

[30] M. Mahoney and P. Chan, “Learning rules for anomaly detection of hostile network

traffic”, Third IEEE International Conference on Data Mining, pp. 601–604, 2003,

issn: 15504786. doi: 10.1109/ICDM.2003.1250987. [Online]. Available: http://

ieeexplore.ieee.org/document/1250987/.

[31] T. Kanungo, D. Mount, N. Netanyahu, C. Piatko, R. Silverman, and A. Wu, “An effi-

cient k-means clustering algorithm: analysis and implementation”, IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 24, no. 7, pp. 881–892, 2002, issn:

0162-8828. doi: 10.1109/TPAMI.2002.1017616.

[32] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A Density-Based Algorithm for Discov-

ering Clusters in Large Spatial Databases with Noise”, Proceedings of the Second In-

ternational Conference on Knowledge Discovery and Data Mining, vol. 2, pp. 226–231,

1996. [Online]. Available: http://dl.acm.org/citation.cfm?id=3001460.3001507.

[33] T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: An Efficient Data Clustering

Method for Very Large Databases”, Proceedings of the 1996 ACM SIGMOD Interna-

tional Conference on Management of Data, vol. 1, pp. 103–114, 1996, issn: 01635808.

doi: 10.1145/233269.233324. [Online]. Available: http://doi.acm.org/10.1145/

233269.233324.

[34] L. Ertoz, E. Eilertson, A. Lazarevic, P.-n. Tan, V. Kumar, J. Srivastava, and P. Dokas,

“MINDS - Minnesota Intrusion Detection System”, Next Generation Data Mining,

pp. 199–218, 2004. [Online]. Available: http://www.it.iitb.ac.in/~deepak/

deepak / courses / mtp / papers / minds - minnesota % 20intrusion % 20detection %

20system.pdf.

[35] F. Iglesias and T. Zseby, “Analysis of network traffic features for anomaly detection”,

Machine Learning, no. October 2014, pp. 59–84, 2015, issn: 0885-6125. doi: 10.1007/

http://dx.doi.org/10.1109/ICDM.2003.1250987
http://ieeexplore.ieee.org/document/1250987/
http://ieeexplore.ieee.org/document/1250987/
http://dx.doi.org/10.1109/TPAMI.2002.1017616
http://dl.acm.org/citation.cfm?id=3001460.3001507
http://dx.doi.org/10.1145/233269.233324
http://doi.acm.org/10.1145/233269.233324
http://doi.acm.org/10.1145/233269.233324
http://www.it.iitb.ac.in/~deepak/deepak/courses/mtp/papers/minds-minnesota%20intrusion%20detection%20system.pdf
http://www.it.iitb.ac.in/~deepak/deepak/courses/mtp/papers/minds-minnesota%20intrusion%20detection%20system.pdf
http://www.it.iitb.ac.in/~deepak/deepak/courses/mtp/papers/minds-minnesota%20intrusion%20detection%20system.pdf
http://dx.doi.org/10.1007/s10994-014-5473-9
http://dx.doi.org/10.1007/s10994-014-5473-9

BIBLIOGRAPHY 65

s10994-014-5473-9. [Online]. Available: http://dx.doi.org/10.1007/s10994-

014-5473-9.

[36] I. Syarif, A. Prugel-bennett, and G. Wills, “Unsupervised Clustering Approach for

Network”, pp. 135–145, 2012. doi: 10.1007/978-3-642-30507-8{_}13.

[37] S. Kumar, S. Kumar, and S. Nandi, “Multi-density clustering algorithm for anomaly

detection Using KDD’99 dataset”, Communications in Computer and Information Sci-

ence, vol. 190 CCIS, no. PART 1, pp. 619–630, 2011, issn: 18650929. doi: 10.1007/

978-3-642-22709-7{_}60.

[38] M. Ahmed and A. N. Mahmood, “Novel Approach for Network Traffic Pattern Analysis

using Clustering-based Collective Anomaly Detection”, Annals of Data Science, vol.

2, no. 1, pp. 111–130, 2015, issn: 2198-5804. doi: 10.1007/s40745-015-0035-y.

[Online]. Available: http://link.springer.com/10.1007/s40745-015-0035-y.

[39] Y. Guan and A. A. Ghorbani, “Y-Means: A Clustering Method for Intrusion Detec-

tion”, no. May, pp. 1083–1086, 2003. doi: 10.1109/CCECE.2003.1226084.

[40] M. Wurzenberger, F. Skopik, M. Landauer, P. Greitbauer, R. Fiedler, and W. Kast-

ner, “Incremental Clustering for Semi-Supervised Anomaly Detection applied on Log

Data”, Proceedings of the 12th International Conference on Availability, Reliability

and Security - ARES ’17, pp. 1–6, 2017. doi: 10.1145/3098954.3098973. [Online].

Available: http://dl.acm.org/citation.cfm?doid=3098954.3098973.

[41] J. Dromard and P. Owezarski, “Integrating Short History for Improving Clustering

Based Network Traffic Anomaly Detection”, Proceedings - 2017 IEEE 2nd Interna-

tional Workshops on Foundations and Applications of Self* Systems, FAS*W 2017,

pp. 227–234, 2017. doi: 10.1109/FAS-W.2017.152.

http://dx.doi.org/10.1007/s10994-014-5473-9
http://dx.doi.org/10.1007/s10994-014-5473-9
http://dx.doi.org/10.1007/s10994-014-5473-9
http://dx.doi.org/10.1007/s10994-014-5473-9
http://dx.doi.org/10.1007/978-3-642-30507-8{_}13
http://dx.doi.org/10.1007/978-3-642-22709-7{_}60
http://dx.doi.org/10.1007/978-3-642-22709-7{_}60
http://dx.doi.org/10.1007/s40745-015-0035-y
http://link.springer.com/10.1007/s40745-015-0035-y
http://dx.doi.org/10.1109/CCECE.2003.1226084
http://dx.doi.org/10.1145/3098954.3098973
http://dl.acm.org/citation.cfm?doid=3098954.3098973
http://dx.doi.org/10.1109/FAS-W.2017.152

66 BIBLIOGRAPHY

[42] F. Rosenblatt, “The perceptron: A probabilistic model for information storage and

organization in the brain”, Psychological Review, vol. 65, no. 6, pp. 386–408, 1958,

issn: 0033295X. doi: 10.1037/h0042519.

[43] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-

propagating errors”, Nature, vol. 323, no. 6088, pp. 533–536, 1986, issn: 00280836. doi:

10.1038/323533a0.

[44] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-Based Learning Applied

to Document Recognition”, Proceedings of the IEEE, 1998. doi: 10.1109/5.726791.

[45] J. Schmidhuber, “Deep Learning in Neural Networks: An Overview”, 2014.

[46] S. Hochreiter and J. Scmidhuber, “Long Short-Term Memory”, vol. 9, no. 8, pp. 1735–

1780, 1997.

[47] S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber, “Gradient Flow in Recur-

rent Nets : the Difficulty of Learning Long-Term Dependencies”, p. 464, 2001.

[48] A. K. Ghosh, A. Schwartzbard, M. Schatz, A. K. Ghosh, A. Schwartzbard, and M.

Schatz, “Learning Program Behavior Profiles for Intrusion Detection”, 1999.

[49] R. C. Staudemeyer, “Applying long short-term memory recurrent neural networks to

intrusion detection”, no. 56, 2015.

[50] J. Kim, J. Kim, T.-T.-H. Le, and H. Kim, “Long Short Term Memory Recurrent Neural

Network Classifier for Intrusion Detection”, 2016.

[51] T.-t.-h. Le, J. Kim, and H. Kim, “An Effective Intrusion Detection Classifier Using

Long Short-Term Memory with Gradient Descent Optimization”, pp. 1–5, 2017.

[52] C. Yin, Y. Zhu, J. Fei, and X. He, “A Deep Learning Approach for Intrusion Detection

Using Recurrent Neural Networks”, vol. 5, 2017.

http://dx.doi.org/10.1037/h0042519
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1109/5.726791

BIBLIOGRAPHY 67

[53] P. Torres and C. Catania, “An Analysis of Recurrent Neural Networks for Botnet

Detection Behavior”,

[54] J. R. Quinlan, “Induction of Decision Trees”, Machine Learning, vol. 1, no. 1, pp. 81–

106, 1986, issn: 15730565. doi: 10.1023/A:1022643204877.

[55] ——, C4.5: Programs for Machine Learning. San Francisco, CA, USA: Morgan Kauf-

mann Publishers Inc., 1993, isbn: 1-55860-238-0.

[56] L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and Regression Trees.

CRC Press, 1984.

[57] S. Peddabachigari, A. Abraham, and J. Thomas, “Intrusion detection systems using

decision trees and support vector machines”, International Journal of Applied . . ., no.

July, pp. 1–16, 2004. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/

download?doi=10.1.1.60.4079&rep=rep1&type=pdf.

[58] S. Sheen and R. Rajesh, “Network intrusion detection using feature selection and

Decision tree classifier”, TENCON 2008 - 2008 IEEE Region 10 Conference, pp. 1–4,

2008. doi: 10.1109/TENCON.2008.4766847. [Online]. Available: http://ieeexplore.

ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4766847.

[59] S. S. Sivatha Sindhu, S. Geetha, and A. Kannan, “Decision tree based light weight

intrusion detection using a wrapper approach”, Expert Systems with Applications, vol.

39, no. 1, pp. 129–141, 2012, issn: 09574174. doi: 10.1016/j.eswa.2011.06.013.

[Online]. Available: http://dx.doi.org/10.1016/j.eswa.2011.06.013.

[60] Z. Yanjie, “Network Intrusion Detection System Model Based on Data Mining”, In-

ternational Conference on Software Engineering, Artificial Intelligence, Networking

and Parallel/Distributed Computing (SNPD), 2016 17th IEEE/ACIS, vol. 9, no. 9,

http://dx.doi.org/10.1023/A:1022643204877
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.60.4079&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.60.4079&rep=rep1&type=pdf
http://dx.doi.org/10.1109/TENCON.2008.4766847
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4766847
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4766847
http://dx.doi.org/10.1016/j.eswa.2011.06.013
http://dx.doi.org/10.1016/j.eswa.2011.06.013

68 BIBLIOGRAPHY

pp. 359–370, 2015. doi: 10.1109/SNPD.2016.7515894. [Online]. Available: http:

//ieeexplore.ieee.org/document/7515894/.

[61] G. Stein, B. Chen, A. S. Wu, and K. A. Hua, “Decision tree classifier for network

intrusion detection with GA-based feature selection”, Proceedings of the 43rd annual

southeast regional conference on - ACM-SE 43, vol. 2, p. 136, 2005. doi: 10.1145/

1167253.1167288. [Online]. Available: http://portal.acm.org/citation.cfm?

doid=1167253.1167288.

[62] S. Revathi and A. Malathi, “A Detailed Analysis on NSL-KDD Dataset Using Vari-

ous Machine Learning Techniques for Intrusion Detection”, International Journal of

Engineering Research & Technology (IJERT), vol. 2, no. 12, pp. 1848–1853, 2013. [On-

line]. Available: http://www.ijert.org/browse/volume-2-2013/december-2013-

edition?download=7027%3Aa-detailed-analysis-on-nsl-kdd-dataset-using-

various-machine-learning-techniques-for-intrusion-detection&start=280.

[63] P. A. A. Resende and A. C. Drummond, “A Survey of Random Forest Based Methods

for Intrusion Detection Systems”, ACM Computing Surveys, vol. 51, no. 3, 52:1–52:27,

2018, issn: 03600300. doi: 10.1145/3178582. [Online]. Available: https://doi.org/

10.1145/3178582.

[64] N. Farnaaz and M. A. Jabbar, “Random Forest Modeling for Network Intrusion Detec-

tion System”, Procedia Computer Science, vol. 89, pp. 213–217, 2016, issn: 18770509.

doi: 10.1016/j.procs.2016.06.047. [Online]. Available: http://dx.doi.org/10.

1016/j.procs.2016.06.047.

[65] H. S. Hota and A. K. Shrivas, “Data Mining Approach for Developing Various Models

Based on Types of Attack and Feature Selection as Intrusion Detection Systems (IDS)”,

Intelligent Computing, Networking, and Informatics, vol. 243, 2014, issn: 2194-5357.

http://dx.doi.org/10.1109/SNPD.2016.7515894
http://ieeexplore.ieee.org/document/7515894/
http://ieeexplore.ieee.org/document/7515894/
http://dx.doi.org/10.1145/1167253.1167288
http://dx.doi.org/10.1145/1167253.1167288
http://portal.acm.org/citation.cfm?doid=1167253.1167288
http://portal.acm.org/citation.cfm?doid=1167253.1167288
http://www.ijert.org/browse/volume-2-2013/december-2013-edition?download=7027%3Aa-detailed-analysis-on-nsl-kdd-dataset-using-various-machine-learning-techniques-for-intrusion-detection&start=280
http://www.ijert.org/browse/volume-2-2013/december-2013-edition?download=7027%3Aa-detailed-analysis-on-nsl-kdd-dataset-using-various-machine-learning-techniques-for-intrusion-detection&start=280
http://www.ijert.org/browse/volume-2-2013/december-2013-edition?download=7027%3Aa-detailed-analysis-on-nsl-kdd-dataset-using-various-machine-learning-techniques-for-intrusion-detection&start=280
http://dx.doi.org/10.1145/3178582
https://doi.org/10.1145/3178582
https://doi.org/10.1145/3178582
http://dx.doi.org/10.1016/j.procs.2016.06.047
http://dx.doi.org/10.1016/j.procs.2016.06.047
http://dx.doi.org/10.1016/j.procs.2016.06.047

BIBLIOGRAPHY 69

doi: 10.1007/978-81-322-1665-0. [Online]. Available: http://link.springer.

com/10.1007/978-81-322-1665-0.

[66] A. Tesfahun and D. Lalitha Bhaskari, “Intrusion detection using random forests classi-

fier with SMOTE and feature reduction”, Proceedings - 2013 International Conference

on Cloud and Ubiquitous Computing and Emerging Technologies, CUBE 2013, pp. 127–

132, 2013. doi: 10.1109/CUBE.2013.31.

[67] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System”, 2016, issn:

0146-4833. doi: 10.1145/2939672.2939785. [Online]. Available: http://arxiv.org/

abs/1603.02754%0Ahttp://dx.doi.org/10.1145/2939672.2939785.

[68] S. Dhaliwal, A.-A. Nahid, and R. Abbas, “Effective Intrusion Detection System Using

XGBoost”, Information, vol. 9, no. 7, p. 149, 2018, issn: 2078-2489. doi: 10.3390/

info9070149. [Online]. Available: http://www.mdpi.com/2078-2489/9/7/149.

[69] M. Ahmadi, D. Ulyanov, S. Semenov, M. Trofimov, and G. Giacinto, “Novel Feature

Extraction, Selection and Fusion for Effective Malware Family Classification”, pp. 183–

194, 2015. doi: 10.1145/2857705.2857713. [Online]. Available: http://arxiv.org/

abs/1511.04317.

[70] A. Kun, J. Michael, E. Valla, N. S. Neggatu, and A. W. Moore, “Network traffic

classification via neural networks”, no. 912, 2017, issn: 1476-2986.

[71] D. Zhang, H. Xu, Z. Su, and Y. Xu, “Chinese comments sentiment classification based

on word2vec and SVMperf”, Expert Systems with Applications, vol. 42, no. 4, pp. 1857–

1863, 2015, issn: 09574174. doi: 10.1016/j.eswa.2014.09.011. [Online]. Available:

http://dx.doi.org/10.1016/j.eswa.2014.09.011.

[72] J. Lilleberg, Y. Zhu, and Y. Zhang, “Support Vector Machines and Word2vec for

Text Classification with Semantic Features”, Proceedings of IEEE 14th International

http://dx.doi.org/10.1007/978-81-322-1665-0
http://link.springer.com/10.1007/978-81-322-1665-0
http://link.springer.com/10.1007/978-81-322-1665-0
http://dx.doi.org/10.1109/CUBE.2013.31
http://dx.doi.org/10.1145/2939672.2939785
http://arxiv.org/abs/1603.02754%0Ahttp://dx.doi.org/10.1145/2939672.2939785
http://arxiv.org/abs/1603.02754%0Ahttp://dx.doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.3390/info9070149
http://dx.doi.org/10.3390/info9070149
http://www.mdpi.com/2078-2489/9/7/149
http://dx.doi.org/10.1145/2857705.2857713
http://arxiv.org/abs/1511.04317
http://arxiv.org/abs/1511.04317
http://dx.doi.org/10.1016/j.eswa.2014.09.011
http://dx.doi.org/10.1016/j.eswa.2014.09.011

70 BIBLIOGRAPHY

Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC), pp. 136–140,

2015. doi: 10.1109/ICCI-CC.2015.7259377.

[73] TensorFlow Team, Introducing TensorFlow Feature Columns, 2017. [Online]. Avail-

able: https://developers.googleblog.com/2017/11/introducing-tensorflow-

feature-columns.html.

[74] M. Bailey, E. Cooke, J. Farnam, Y. Xu, and M. Karir, “A survey of botnet technology

and defenses”, Cybersecurity Applications & Technology, 2009.

[75] M. Jagielski, A. Oprea, B. Biggio, C. Liu, C. Nita-Rotaru, and B. Li, “Manipulating

Machine Learning: Poisoning Attacks and Countermeasures for Regression Learning”,

Proceedings - IEEE Symposium on Security and Privacy, vol. 2018-May, no. 1, pp. 19–

35, 2018, issn: 10816011. doi: 10.1109/SP.2018.00057.

[76] J. Steinhardt, P. W. Koh, and P. Liang, “Certified Defenses for Data Poisoning At-

tacks”, no. i, 2017, issn: 10495258. [Online]. Available: http://arxiv.org/abs/1706.

03691.

http://dx.doi.org/10.1109/ICCI-CC.2015.7259377
https://developers.googleblog.com/2017/11/introducing-tensorflow-feature-columns.html
https://developers.googleblog.com/2017/11/introducing-tensorflow-feature-columns.html
http://dx.doi.org/10.1109/SP.2018.00057
http://arxiv.org/abs/1706.03691
http://arxiv.org/abs/1706.03691

Appendices

71

Appendix A

Feature Importances

This section displays the top 150 features used in models trained with and without the

IP2Vec data. This includes both XGBoost and random forests, but does not include MLP

as neural networks do not include a means of extracting the importance of features.

72

73

Figure A.1: Importances for Features Ranked 1-75 in Non-Embedded XGBoost

74 Appendix A. Feature Importances

Figure A.2: Importances for Features Ranked 76-150 in Non-Embedded XGBoost

75

Figure A.3: Importances for Features Ranked 1-75 in Embedded XGBoost

76 Appendix A. Feature Importances

Figure A.4: Importances for Features Ranked 76-150 in Embedded XGBoost

77

Figure A.5: Importances for Features Ranked 1-75 in Non-Embedded Random Forests

78 Appendix A. Feature Importances

Figure A.6: Importances for Features Ranked 76-150 in Non-Embedded Random Forests

79

Figure A.7: Importances for Features Ranked 1-75 in Embedded Random Forests

80 Appendix A. Feature Importances

Figure A.8: Importances for Features Ranked 76-150 in Embedded Random Forests

	Titlepage
	Abstract
	General Audience Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Research Problem
	Proposed Solution
	Thesis Outline

	Background
	Categorical Data Representation
	Encoding
	Embedding

	Word2Vec
	Visualization
	PCA — Principal Component Analysis
	t-SNE — t-Distributed Stochastic Neighbor Embedding
	Comparison

	Review of Literature
	Security Datasets
	DARPA
	KDD'99
	NSL-KDD
	CTU'13
	UNSW-NB15
	UGR'16

	Machine Learning
	Clustering
	Neural Networks
	Decision Trees
	Categorical Data Representation

	Experimental Design
	Binned IP2Vec
	Choosing Word Pairs
	Embedding Model Design

	Evaluation
	Binned IP2Vec
	CTU'13
	UGR'16

	Intrusion Detection
	Data Engineering
	Feature Space
	Supervised Learning
	Analysis

	Discussion
	Future Work

	Conclusion
	Bibliography
	Appendices
	Appendix Feature Importances

